Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions
Abstract
:1. Introduction and Motivation
2. Main Results
3. Partial Sums
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altinkaya, Ş.; Yalçin, S. Poisson distribution series for certain subclasses of starlike functions with negative coefficients. Ann. Oradea Univ. Math. Fasc. 2017, 24, 5–8. [Google Scholar]
- El-Deeb, S.M.; Bulboaca, T.; Dziok, J. Pascal distribution series connected with certain subclasses of univalent functions. Kyungpook Math. J. 2019, 59, 301–314. [Google Scholar]
- Nazeer, W.; Mehmood, Q.; Kang, S.M.; Haq, A.U. An application of Bionomial distribution series on certain analytic functions. J. Comput. Anal. Appl. 2019, 26, 11–17. [Google Scholar]
- Porwal, S.; Kumar, M. A unified study on starlike and convex functions associated with Poisson distribution series. Afr. Mat. 2016, 27, 10–21. [Google Scholar] [CrossRef]
- Wanas, A.K.; Al-Ziadi, N.A. Applications of beta negative binomial distribution series on holomorphic funxtions. Earthline J. Math. Sci. 2021, 6, 271–292. [Google Scholar] [CrossRef]
- Wanas, A.K.; Khuttar, J.A. Applications of Borel distribution series on analytic functions. Earthline J. Math. Sci. 2020, 4, 71–82. [Google Scholar] [CrossRef]
- Ahmad, B.; Khan, M.G.; Aouf, M.K.; Mashwani, W.K.; Salleh, Z. Tang, H. Applications of a new q-difference operator in Janowski-type meromorphic convex functions. J. Funct. 2021, 2021, 5534357. [Google Scholar]
- Khan, B.; Srivastava, H.M.; Arjika, S. A certain q-Ruscheweyh type derivative operator and its applications involving multivalent functions. Adv. Differ. Equ. 2021, 2021, 279. [Google Scholar] [CrossRef]
- Shi, L.; Ahmad, B.; Khan, N.; Khan, M.G.; Araci, S.; Mashwani, W.K.; Khan, B. Coefficient Estimates for a Subclass of Meromorphic Multivalent q-Close-to-Convex Functions. Symmetry 2021, 13, 1840. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorthy, G.; Sivasubramanian, S. Hypergeometric functions in the parabolic starlike and uniformly convex domains. Integr. Transf. Spec. Func. 2007, 18, 511–520. [Google Scholar] [CrossRef]
- Yin, W.; Yang, W.; Liu, H. A neural network scheme for recovering scattering obstacles with limited phaseless far-field data. J. Comput. Phys. 2020, 417, 1–26. [Google Scholar] [CrossRef]
- Yin, W.; Ge, J.; Meng, P. A neural network method for the inverse scattering problem of impenetrable cavities. Electron Res. Arch 2020, 28, 1123–1142. [Google Scholar] [CrossRef]
- Cao, X.; Diao, H.; Liu, H.; Zou, J. On nodal and generalized singular structures of Laplacian eigen functions and applications to inverse scattering problems. J. Math. Pures Appl. 2020, 143, 116–161. [Google Scholar] [CrossRef]
- Fang, X.; Deng, Y. Uniqueness on recovery of piecewise constant conductivity and inner core with one measurement. Inverse Probl. Imaging 2018, 12, 733–743. [Google Scholar] [CrossRef] [Green Version]
- Blasten, E.; Liu, H. Scattering by curvatures, radiationless sources, transmission eigenfunctions, and inverse scattering problems. SIAM J. Math. Anal. 2021, 53, 3801–3837. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Khan, N.; Mashwani, W.K.; Arjika, S.; Khan, B.; Chinram, R. Applications of Mittag-Leffler type poisson distribution to a subclass of analytic functions involving conic-type regions. J. Funct. Spaces 2021, 2021, 4343163. [Google Scholar]
- Srivastava, H.M.; El-Deeb, S.M. Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution. Symmetry 2021, 13, 1023. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Murugusundaramoorty, G.; El-Deeb, S.M. Faber polynomial coefficient estimates of bi-close-to-convex functions connected with Borel distribution of the Mittag-Leffler-type. J. Nonlinear Var. Anal. 2021, 5, 103–118. [Google Scholar]
- El-Deeb, S.M.; Murugusundaramoorty, G.; Alburaikan, A. A bi-Bazilevič functions based on the Mittag-Leffler-Type Borel distribution associated with Legendre polynomials. J. Math. Comput. Sci. 2021, 24, 235–245. [Google Scholar] [CrossRef]
- Keogh, F.R.; Merkes, E.P. A coefficient inequality for certain classes of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Cambridge, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.G.; Darus, M.; Ahmad, B.; Murugusundaramoorty, G.; Khan, R.; Khan, N. Meromorphic starlike functions with respect to symmetric points. Int. J. Anal. Appl. 2020, 18, 1037–1047. [Google Scholar]
- Khan, M.G.; Ahmad, B.; Salleh, Z. On subclasses of harmonic mappings involving Frasin operator. Afr. Mat. 2021, 32, 1159–1171. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, B.; Khan, M.G.; Cotîrlă, L.-I. Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions. Symmetry 2022, 14, 322. https://doi.org/10.3390/sym14020322
Ahmad B, Khan MG, Cotîrlă L-I. Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions. Symmetry. 2022; 14(2):322. https://doi.org/10.3390/sym14020322
Chicago/Turabian StyleAhmad, Bakhtiar, Muhammad Ghaffar Khan, and Luminiţa-Ioana Cotîrlă. 2022. "Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions" Symmetry 14, no. 2: 322. https://doi.org/10.3390/sym14020322
APA StyleAhmad, B., Khan, M. G., & Cotîrlă, L. -I. (2022). Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions. Symmetry, 14(2), 322. https://doi.org/10.3390/sym14020322