Next Article in Journal
New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions
Next Article in Special Issue
Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain
Previous Article in Journal
A Novel Method for Friction Coefficient Calculation in Metal Sheet Forming of Axis-Symmetric Deep Drawing Parts
Previous Article in Special Issue
Applications of Borel-Type Distributions Series to a Class of Janowski-Type Analytic Functions
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator

by
Waggas Galib Atshan
1,*,
Rajaa Ali Hiress
2 and
Sahsene Altınkaya
3
1
Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah 58001, Iraq
2
Education of Al-Qadisiyah, Ministry of Education, Diwaniyah 58001, Iraq
3
Department of Mathematics, Beykent University, 34500 Istanbul, Turkey
*
Author to whom correspondence should be addressed.
Symmetry 2022, 14(2), 418; https://doi.org/10.3390/sym14020418
Submission received: 17 December 2021 / Revised: 27 December 2021 / Accepted: 13 January 2022 / Published: 19 February 2022
(This article belongs to the Special Issue Symmetry in Pure Mathematics and Real and Complex Analysis)

Abstract

:
In this current study, we aim to give some results for third-order differential subordination and superordination for analytic functions in U = { z : | z | < 1 }   involving the generalized operator I α , β j f . The results are derived by investigating relevant classes of admissible functions. Some new results on differential subordination and superordination with some sandwich theorems are obtained. Moreover, several particular cases are also noted. The properties and results of the differential subordination are symmetry to the properties of the differential superordination to form the sandwich theorems.

1. Introduction

Indicate by = ( U ) the collection of analytic functions in the open unit disc U that have the form:
[ a , n ] = { f ( U ) : f ( z ) = a + a n z n + a n + 1 z n + 1 + a n + 2 z n + 2 +     }    
( a , n = { 1 , 2 , 3 , } ) ,
and indicate by A ( n ) the subclasses of ( U ) comprising of functions
f ( z ) = z + k = n + 1 a k z k ,               ( z U ) .
Note that A ( 1 ) = A . Further, let the functions f 1 and f 2 be in the class ( U ) . It is said that the function f 1 is subordinate to   f 1 or f 2 is superordinate to f 1 , if there exists a Schwarz function κ ( z )   ( κ ( 0 ) = 0 ,   | κ ( z ) | < 1 ,   z U ) analytic in U such that
f 1 ( z ) = f 2 ( κ ( z ) ) .
This subordination is indicated by f 1 ( z )     f 2 ( z ) . Specifically, if the function f 2 is univalent in U , then we obtain (see [1])
f 1 ( z ) f 2 ( z )     f 1 ( 0 ) = f 2 ( 0 )   and   f 1 ( U ) f 2 ( U ) .
Now, we will recall the generalized operato I α , β j on A as below [2].
Suppose that β 0 and α is   a   real   number   with   ( α + β ) > 0 .   Then   for   j 0 = { 0 }   and   f A ,   the   operator   I α , β j   is   defined   by
I α , β 0 f ( z ) = f ( z )   I α , β 1 f ( z ) = α f ( z ) + β z f ( z ) α + β   I α , β j f ( z ) = I α , β   ( I α , β j 1 f ( z ) ) .
We see that I α , β j :   A   A   is   a   linear   operator   and
I α , β j f ( z ) = z + k = 2 ( α + k β α + β ) j   a k z k     .  
If f A ( n ) , then the operator I α , β j is expressed by the infinite series:
          I α , β j f ( z ) = z + k = n + 1 ( α + k β α + β ) j   a k z k    
It is derived from (1) that
β z ( I α , β j f ( z ) ) = ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) .
Further, for the particular values of α and β, Swamy [2] point out that the operator   I α , β j f ( z ) reduces to various operators. Some of them are illustrated below:
  • I α , 0 j f ( z ) = f ( z ) ;
  • I   1 β , β j f ( z ) = D β j f ( z ) , ( β 0 ) , known as Al-Oboudi differential operator [3];
  • I α , 1 j f ( z ) = I α j f ( z ) , ( α > 1 ) , investigated by Cho and Srivastava [4], Cho and Kim [5];
  • I γ + 1 β , β j f ( z ) = I   γ , β j f ( z ) , ( γ > 1 , β 0 ) , studied by Catas [6].
Antonino and Miller [7] (also [8,9]) have expanded the concept of second-order differential subordination and superordination in U established by Miller and Mocanu [1,10,11] to the third-order case. They derived features of functions p that fulfill the third-order differential subordination:
{ ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) : z U } Ω ,
and also for third-order differential superordination:
Ω { ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) : z U } ,
where Ω is a set in , p is an analytic function and ψ : 4 × U .
Recently, several authors studied some applications on the concept of second-order differential subordination and superordination and established some sandwich outcomes, like, (see [12,13]) and third-order for different classes (see [8,9,14]). For some interesting applications related to the differential subordination and superordination in other subjects of mathematics, we may refer to [15,16,17].
In order to demonstrate our outcomes, we shall give several definitions and theorems below.
Definition 1.
(See [7]) Let ψ : 4 × U   and assume h is univalent in U . If the function p is analytic in U and fulfills
ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) h ( z ) ,
then the function p is named a solution of the differential subordination. A univalent function q is named a dominant of the solution of the differential subordination if p ( z ) q ( z ) for all p satisfying (2). A dominant q ˜ ( z )   that fulfills q ˜ ( z ) q ( z ) for all dominants  q of (2) is named best dominant.
Definition 2.
(See [9]) Let ψ : 4 × U   and assume h is analytic in U. If the functions p,
ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z )
are univalent in U and fulfill
h ( z ) ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) ,
then function p is named a solution of the differential superordination. Further, an analytic function q is named subordinant of the solutions of the differential superordination, or more simply a subordinant if q ( z ) p ( z ) for all p satisfying (3). A univalent subordinant q ˜ ( z )   that fulfills q ( z ) q ˜ ( z ) for all subordinants q of (3) is named the best subordinant.
Definition 3.
(See [7]) Indicate by Q . the set of all functions q(z) that are analytic on U ¯ \ E ( q ) , where ,
E ( q ) = { ζ : ζ U : lim z ζ q ( z ) = } ,
and are such that q ( ζ ) 0   for   ζ U \ E ( q ) . Further, indicate by Q ( a ) the subclass of   Q   consisting of functions q for which q ( 0 ) = a . Note that by Q 1 = Q ( 1 ) = { q ( z ) Q : q ( 0 ) = 1 } .
Definition 4.
(See [7]) A s s u m e   Ω   be a set in   ,   q Q and   n \ { 1 } . The class of admissible functions Ψ n [ Ω , q ]   consists of those functions ψ : 4 × U that fulfill the following admissibility condition:
ψ ( r , s , t , u ; z ) Ω ,
whenever
r = q ( ζ ) ,       s = k ζ q ( ζ ) ,     Re { t s + 1 } k Re { 1 + ζ q ( ζ ) q ( ζ ) } ,       Re { u s } k 2 Re {   ζ 2 q ( ζ ) q ( ζ ) } ,
( z U , ζ U \ E ( q )     and   k   n ) .
Definition 5.
(See [9]) Let   Ω   be a set in   , q [ a , n ] with q ( z ) 0 and   n \ { 1 } . The class of admissible functions Ψ n [ Ω , q ]   consists of those functions   ψ : 4 × U ¯   that satisfy the following admissibility condition:
ψ ( r , s , t , u ; z ) Ω ,
whenever
r = q ( z ) ,       s = z q ( z )   m ,       Re   { t s + 1 } 1 m .   Re { 1 + z q ( z ) q ( z ) } ,       Re   { u s } 1 m 2 Re {   z 2 q ( z ) q ( z ) } ,
( z U , ζ U     m   n   2 ) .
Theorem 1.
(See [7]) Assume p [ a , n ]   ( n 2 ) . Further, let q Q ( a ) fulfill the conditions:
Re { ζ q ( ζ ) q ( ζ ) } 0 ,       | z p ( z ) q ( ζ ) | k ,   ( z U ,     ζ U \ E ( q )     and   k n ) .
If   Ω   is a set in   ,   ψ   Ψ n [ Ω , q ] and
ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) Ω ,
then
p ( z ) q ( z )         ( z U ) .
Theorem 2.
(See [9]) Let ψ   Ψ n   [ Ω , q ] . If ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) is univalent in U ,   p Q ( a )   and   q [ a , n ]   fulfill
Re { ζ q ( ζ ) q ( ζ ) } 0   ,       | z p ( z ) q ( ζ ) | m ,   ( z U ,     ζ U     and   m n 2 ) ,
then
Ω { ψ ( p ( z ) , z p ( z ) , z 2 p ( z ) , z 3 p ( z ) ; z ) : z U } ,
implies that
q ( z ) p ( z )         ( z U ) .
The current paper utilizes the techniques on the third-order differential subordination and superordination outcomes of Antonino and Miller [7], Ali et al. [18] and Tang et al. [9], respectively and different conditions (see [19,20]). Certain classes of admissible functions are investigated in this current paper, some properties of the third-order differential subordination and superordination for analytic functions in U related to the operator I α , β j f are also mentioned.

2. Third-Order Differential Subordination Properties

This part includes third-order differential subordination properties are derived for analytic involving the generalized operator I α , β j f .
Definition 6.
Let q Q 0 and be a set in . The class of admissible functions Φ Ι , 1 [ Ω , q ]   consists of those functions ϕ : 4 × U  that fulfill the admissibility condition:
ϕ ( u , v , x , y ; z ) Ω ,
whenever
u = q ( ζ ) ,     v = k ζ β q ( ζ ) + α q ( ζ )     ( α + β ) ,
Re {   ( α + β ) 2 x 2 α ( v α + v β ) + α 2 u β ( v ( α + β ) α u ) 1 } k Re {   ζ q ( ζ ) q ( ζ ) + 1 } ,
and
Re   { ( α + β ) 3 y ( 3 α + 3 β ) ( α + β ) 2 x + 9 α 2 v β + 6 α v β 2 3 α 2 u β α 3 u + 3 α 3 v β 2 ( v ( α + β ) α u ) + 2 }
k 2 Re {   ζ 2 q ( ζ ) q ( ζ ) } ,
where   z U , ζ U \ E ( q ) ,   β > 0 and k \ { 1 } .
Theorem 3.
Let ψ     Φ Ι , 1 [ Ω , q ] . If f A ( n ) and q Q 0   fulfills the conditions
R e { ζ q ( ζ ) q ( ζ ) } 0 ,       | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k β | q ( ζ ) |
and
{ ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) : z U } Ω ,
then
I α , β j f ( z ) q ( z )         ( z U ,     ζ U \ E ( q ) ,     β > 0   and   k \ { 1 } ) .
Proof. 
Let us put
w ( z ) = I α , β j f ( z ) .
By differentiating (6) with respect to z and from (1), we find
I α , β j + 1 f ( z ) = β z w ( z ) + α w ( z ) α + β .
Further computations give
I α , β j + 2 f ( z ) = β 2 z 2 w ( z ) + ( β 2 + 2 α β ) z w ( z ) + α 2 w ( z ) ( α + β ) 2
and
I α , β j + 3 f ( z ) = β 3 z 3 w ( z ) + ( 3 α β 2 + 3 β 3 ) z 2 w ( z ) + ( 3 α 2 β + 3 α β 2 + β 3 ) z w ( z ) + α 3 w ( z ) ( α + β ) 3 .
Now, we will establish a transformation from 4 to by
u ( r , s , t , e ) = r ,       v ( r , s , t , e ) = β s + α r ( α + β ) ,         x ( r , s , t , e ) = β 2 t + ( β 2 + 2 α β ) s + α 2 r ( α + β ) 2
and
y ( r , s , t , e ) = β 3 e + ( 3 α β 2 + 3 β 3 ) t + ( 3 α 2 β + 3 α β 2 + β 3 ) s + α 3 r ( α + β ) 3 .
Next, suppose
ψ ( r , s , t , e ; z ) = ϕ ( u , v , x , y ; z ) = ϕ ( r , β s + α r ( α + β ) , β 2 t + ( β 2 + 2 α β ) s + α 2 r ( α + β ) 2 ,
β 3 e + ( 3 α β 2 + 3 β 3 ) t + ( 3 α 2 β + 3 α β 2 + β 3 ) s + α 3 r ( α + β ) 3 ; z ) .    
It follows from (9) and Theorem 1 that
ψ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) = ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) .
Hence, the inclusion (5) leads to
ψ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) Ω .
Moreover, in view of (7) and (8), we get
      t s + 1 =   ( α + β ) 2 x 2 α ( v α + v β ) + α 2 u β ( v ( α + β ) α u ) 1 ,
and
e s = ( α + β ) 3 y ( 3 α + 3 β ) ( α + β ) 2 x + 9 α 2 v β + 6 α v β 2 3 α 2 u β α 3 u + 3 α 3 v β 2 ( v ( α + β ) α u ) + 2 .
Therefore, the admissibility condition in Definition 6 for ϕ Φ Ι , 1 [ Ω , q ]   is equivalent to the condition for ψ Φ 2 [ Ω , q ]   as given in Definition 4 for n = 2 . Hence, by making use of (4) and applying Theorem 1, we see that
I α , β j f ( z ) q ( z ) .
 □
The next outcome is a direct conclusion of Theorem 3.
Theorem 4.
Let ϕ Φ Ι , 1 [ h , q ] . If the functions f A ( n ) and q Q 0  fulfill the following conditions
    Re { ζ q ( ζ ) q ( ζ ) } 0 ,       | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k β | q ( ζ ) | ,      
and
ϕ { I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) : z U } h ( z ) ,
then
I α , β j f ( z ) q ( z ) .
Proof. 
It is clear that by using Theorem 3, we arrive at the desired outcome. □
The next corollaries are extensions of Theorem 3 to the case where the behavior of q ( z ) on   U is not known.
Corollary 1.
Assume  and q ( z ) is univalent in U with q ( 0 ) = 1 , ϕ Φ Ι , 1 [ Ω , q ρ ]  for some ρ ( 0 , 1 ) where q ρ ( z ) = q ( ρ z ) .   If   f ( z ) A ( n ) and q ρ Q 0  fulfill
    Re { ζ q ρ ( ζ ) q ρ ( ζ ) } 0 ,       | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k   β | q ρ ( ζ ) | ,
and
ϕ {   I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) : z U } Ω ,
then
I α , β j f ( z )   q ρ ( z ) .
Proof. 
Theorem 3 yields I α , β j f ( z ) q ( z ) . The outcome is now deduced from q ρ ( z ) q ( z ) .  □
Corollary 2.
Let  and suppose that q(z) is univalent in U with q ( 0 ) = 1 , ϕ Φ Ι , 1 [ Ω , q ρ ]  for some ρ ( 0 , 1 ) , where q ρ ( z ) = q ( ρ z ) .   If   f ( z ) A ( n ) and q ρ Q 0  fulfill
Re { ζ q ρ ( ζ ) q ρ ( ζ ) } 0 ,       | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k β   | q ρ ( ζ ) | ,
and
ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) h ( z ) ,
then
I α , β j f ( z ) q ( z ) .
Proof. 
The outcome is similar to the proof of ([17], Theorem 2.3d, p. 30) and is therefore omitted. □
Theorem 5.
Let ψ : 4 × U , h be univalent function in   U and ψ be given by (9). Assume
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z ) ,
has a solution   q ( z ) Q 0 . If the function f A ( n )   fulfill (4) and
ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) , β > 0  
is analytic in U, then (11) implies that
I α , β j f ( z ) q ( z ) ,
and q ( z )   is the best dominant.
Proof. 
From Theorem 3, we find that q ( z ) is a dominant (11) since q ( z ) fulfills
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z ) ,
it is also a solution of the above differential equation and therefore q ( z ) will be dominated by all dominants. Hence, q ( z ) is the best dominant. □
According to Definition 6 and for q ( z ) = M z , ( M > 0 ) , the class of admissible functions Φ Ι , 1 [ Ω , q ] =   Φ Ι , 1 [ Ω , ] is expressed below.
Definition 7.
The class of admissible functions Φ Ι , 1 [ Ω , ] consists of those functions ψ : 4×   U   such that
ψ ( e i θ , ( α + β k ) e i θ ( α + β ) , β 2 L + ( ( β 2 + 2 α β ) k + α 2 ) e i θ ( α + β ) 2 , β 3 N + ( 3 α β 2 + 3 β 3 ) L + ( ( 3 α 2 β + 3 α   β 2 + β 3 ) k + α 3 ) e i θ ( α + β ) 3 ; z ) Ω ,
where   z U , β > 0 ,   R e ( L   e i θ ) ( k 1 ) k ,   and for all   θ   and   k \ { 1 } .
Corollary 3.
Let ψ Φ Ι , 1 [ Ω , ] . If the function f A ( n )  fulfills the conditions:
        | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k β ,
and
ϕ   ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) Ω ,
then
    | I α , β j f ( z ) | < .
If Ω = q ( U ) = { w : | w | <   ( > 0 ) } ,   then the class Φ Ι , 1 [ ] is represented by Φ Ι , 1 [ Ω , ] .
Corollary 4.
Let ψ Φ Ι , 1 [ ] . If the function f A ( n )   fulfills
    | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | k β ,
and
| ψ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) | < ,
and
ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) Ω
then
| I α , β j f ( z ) | < ,
Corollary 5.
Let M > 0 , k \ { 1 } ,   β > 0   and ( α + β ) > 0 . If the function f A ( n ) . fulfills the following conditions:
| I α , β j + 2 f ( z ) I α , β j + 1 f ( z ) | < 2 β 2 + 2 α β   ( α + β ) 2 ,
then
| I α , β j f ( z ) | < .
Proof. 
We put ϕ ( u , v , x , y ; z ) = x v . According to Corollary 3 with Ω = h ( U )   and   h ( z ) = 2 β 2 + 2 α β   ( α + β ) 2 z ,   ( z U ) , we shall present that ψ Φ Ι , 1 [ Ω , ] . Since
| ϕ ( e i θ , ( α + β k ) e i θ ( α + β ) , β 2 L + ( ( β 2 + 2 α β ) k + α 2 ) e i θ ( α + β ) 2 , β 3 N + ( 3 α β 2 + 3 β 3 ) L + ( ( 3 α 2 β + 3 α   β 2 + β 3 ) k + α 3 ) e i θ ( α + β ) 3 ) ; z   |
= | β 2 L + α β k e i θ ( α + β ) 2 | ,
= | β 2 L e i θ + α β k   ( α + β ) 2 e i θ |
  β 2 R e ( L e i θ ) + k | α β |   ( α + β ) 2  
2 β 2 + 2 α β   ( α + β ) 2   ,
the proof is completed. □
Now, we establish the next admissible class.
Definition 8.
Assume q Q 1   and is a set in . The class of admissible functions Φ Ι , 2 [ Ω , q ] consists of those functions   ϕ : 4 × U  that fulfill the admissibility conditions:
ϕ ( u , v , x , y ; z ) Ω ,
whenever
u = q ( ζ ) ,                   v = k ζ β q ( ζ ) + ( α + β ) q ( ζ )   ( α + β ) ,
Re { ( α + β ) 2 x β 2 u + α 2 ( u 2 v ) 2 α β v β ( ( α + β ) v ( α + β ) u ) 2 } k Re {   ζ q ( ζ ) q ( ζ ) + 1 } ,
    Re { ( α + β ) 3 y ( 3 α + 6 β ) ( α + β ) 2 x + 15 β α 2 v + 12 α β 2 v + 3 α 3 v α 3 u 6 α β u 3 + 5 β 3 u β 2 ( v ( α + β ) ( α + β ) u ) + 11   } k 2 Re {   ζ 2 q ( ζ ) q ( ζ ) } ,      
where   k \ { 1 } ,   β > 0 ,   ζ U \ E ( q )   and   z U .
Theorem 6.
Let ψ Φ Ι , 2 [ Ω , q ] . If the function f A ( n ) and q Q 1 fulfills the following conditions
Re { ζ q ( ζ ) q ( ζ ) } 0 ,       | ( α + β ) ( I α , β j + 1 f ( z ) I α , β j f ( z ) z ) | k β | q ( ζ ) |
and
{ ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) : z U } Ω ,
then
    I α , β j f ( z ) z q ( z ) .
Proof. 
Let put
w ( z ) = I α , β j f ( z ) z .
Then, by differentiating (14) with respect to z and from (1), we find that
I α , β j + 1 f ( z ) z = β z w ( z ) + ( α + β ) w ( z ) ( α + β ) .
Further computations give
  I α , β j + 2 f ( z )   z = β 2 z 2 w ( z ) + ( 3 β 2 + 2 α β ) z w ( z ) + ( α + β ) 2   w ( z ) ( α + β ) 2 ,
and
I α , β j + 3 f ( z ) z = β 3 z 3 w ( z ) + ( 3 α β 2 + 6 β 3 ) z 2 w ( z ) + ( 9 α β 2 + 3 α 2 β   + 7 β 3 ) z w ( z ) + ( α + β ) 3 w ( z ) ( α + β ) 3 .
Now, we will express a transformation from 4 to by
u ( r , s , t , e ) = r ,     v ( r , s , t , e ) = β s + ( α + β ) r ( α + β ) ,     x ( r , s , t , e ) = β 2 t + ( 3 β 2 + 2 α β ) s + ( α + β   ) 2 r ( α + β ) 2 ,
and
y ( r , s , t , e ) = β 3 e + ( 3 α β 2 + 6 β 3 ) t + ( 9 α 2 β + 3 α 2 β   + 7 β 3 ) s + ( α + β ) 3 r ( α + β ) 3 .
Next, suppose that
ψ ( r , s , t , e ; z ) = ϕ ( u , v , x , y ; z ) = ψ ( r , β s + ( α + β ) r ( α + β ) , β 2 t + ( 3 β 2 + 2 α β ) s + ( α + β   ) 2 r ( α + β ) 2 ,
β 3 e + ( 3 α β 2 + 6 β 3 ) t + ( 9 α 2 β + 3 α 2 β   + 7 β 3 ) s + ( α + β ) 3 r ( α + β ) 3 ; z )  
It follows from (17) and Theorem 1 that
ψ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) = ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) .
Hence, (13) leads to
ϕ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) Ω .
Moreover, in view of (15) and (16), we get
t s + 1 = ( α + β ) 2 x β 2 u + α 2 ( u 2 v ) 2 α β v β ( ( α + β ) v ( α + β ) u ) 2
and
e s = ( α + β ) 3 y ( 3 α + 6 β ) ( α + β ) 2 x + 15 β α 2 v + 12 α β 2 v + 3 α 3 v α 3 u 6 α β u 3 + 5 β 3 u β 2 ( v ( α + β ) ( α + β ) u ) + 11 .    
Therefore, the admissibility condition in Definition 8 for ψ Φ Ι , 2 [ Ω , q ] is equivalent to the condition for ψ     Ψ 2 [ , q ] as given in Definition 4 for n = 2. According to (4) and Theorem 1, we see that
w ( z ) = I α , β j f ( z ) z q ( z ) .
If Ω is a simply connected domain and = h ( U ) for some conformal mapping h of U onto , then the class Φ Ι , 2 [ h ( U ) , q ] is expressed by Φ Ι , 2 [ h , q ] . □
Theorem 7.
Let ϕ Φ Ι , 2 [ h , q ] . If the functions f A ( n ) and q Q 1   fulfill
Re { ζ q ( ζ ) q ( ζ ) } 0 ,     | ( α + β ) ( I α , β j + 1 f ( z ) I α , β j f ( z ) z ) | k β | q ( ζ ) | ,
and
ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) h ( z ) ,
then
I α , β j f ( z ) z q ( z ) .
Proof. 
It is clear that from Theorem 6, we arrive at the outcome. □
The next corollaries are extensions of Theorem 6 to the case where the behavior of q on   U is not known.
Corollary 6.
Let   Ω and suppose that q ( z ) is univalent function in   U with   q ( 0 ) = 1 . Let ϕ Φ Ι , 2 [ Ω , q ρ ] for some ρ ( 0 , 1 ) , where q ρ ( z ) = q ( ρ z ) .   If   f A ( n ) and q ρ Q 0   fulfills
Re {   ζ q ρ ( ζ )     q ρ ( ζ ) } 0 , | ( α + β ) ( I α , β j + 1 f ( z ) I α , β j f ( z ) z ) | k β | q ρ ( ζ ) | ,
and
ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) Ω ,
then
I α , β j f ( z ) z q ( z ) ,
( z U ,     ζ U \ E ( q ρ ) ,     β > 0   and   k \ { 1 } ) .
Proof. 
As a consequence of Theorem 6, that I α , β j f ( z ) z q ρ ( z ) .
Now, the outcome may be deduce from q ρ ( z ) q ( z )
The proof of Corollary 6 is complete. □
Corollary 7.
Let   Ω and suppose that q ( z ) is univalent function in   U   ( q ( 0 ) = 1 ) . Let ϕ Φ Ι , 1 [ Ω , q ρ ] for some ρ ( 0 , 1 ) , where q ρ ( z ) = q ( ρ z ) .   If   f A ( n ) and q ρ Q 0  fulfills
Re {   ζ q ρ ( ζ )     q ρ ( ζ ) } 0 ,       | ( α + β ) ( I α , β j + 1 f ( z ) I α , β j f ( z ) z ) | k β | q ρ ( ζ ) | ,
and
    ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) h ( z ) ,    
then
I α , β j f ( z ) z q ( z ) ,
( z U ,     ζ U \ E ( q ρ ) ,     β > 0   and   k \ { 1 } ) .
Theorem 8.
Assume   ϕ : 4 × U , h is univalent in U and ψ is given by (9). Assume the differential equation
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z )
has a solution   q ( z ) Q 1 . If the function f A ( n )   fulfills the condition (19) and
ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) , β > 0  
is analytic in U , then (19) implies that
I α , β j f ( z ) z q ( z )
and q ( z ) is the best dominant.
Proof. 
From Theorem 6, we find that q ( z ) is a dominant (19) since q ( z ) fulfills:
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z ) , it is also a solution of the above differential equation and therefore q ( z ) will be dominated by all dominants. □

3. Third-Order Differential Superordination Properties

This part analyzes the third-order differential superordination properties.
Definition 9.
Let   Ω   be a set in   ,   q with q ( z ) 0 and   m \ { 1 } . The class of admissible functions Φ I , 1 [ Ω , q ]   consists of those functions   ϕ : 4 × U ¯  which fulfill the admissibility condition
ψ ( u , v , x , y ; ζ ) Ω ,
whenever
u = q ( z ) ,     v = k z β q ( z ) + m α q ( z )     m ( α + β ) ,
Re {   ( α + β ) 2 x 2 α ( v α + v β ) + α 2 u β ( v ( α + β ) α u ) 1 } 1 m Re {   z q ( z ) q ( z ) + 1 }    
and
Re { ( α + β ) 3 y ( 3 α + 3 β ) ( α + β ) 2 x + 9 α 2 v β + 6 α v β 2 3 α 2 u β α 3 u + 3 α 3 v β 2 ( v ( α + β ) α u ) + 2 } 1 m 2 R e {   z 2 q ( z ) q ( z ) } ,
( z U ,     β > 0   and   ζ U ,   m \ { 1 } ) .
Theorem 9.
Let   ϕ   Φ I , 1 [ Ω , q ] . If the functions f A ( n ) ,   β > 0   and I α , β j f ( z ) Q 0  fulfills the following conditions
R e { z q ( z ) q ( z ) } 0 ,       | ( α + β ) I α , β j + 1 f ( z ) α I α , β j f ( z ) | m β | q ( z ) |
and
ϕ   (   I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z )
is univalent in U , then
Ω { ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) : z U } ,
implies that
q ( z ) I α , β j f ( z ) .
Proof. 
Let the function w ( z )   be given by (6) and ψ be given by (9). Since   ψ   Φ I , 1 [ Ω , q ] , the Equations (10) and (21) imply that
Ω ψ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) .  
This follows easily from (9), the admissible condition for ψ   Φ I , 1 [ Ω , q ] in Definition 9 is equivalent to the admissible condition for ψ   ψ I , 1 [ Ω , q ] as given in Definition 5 for n = 2 . Hence, by using the conditions in (20) and from Theorem 2, we obtain
q ( z ) w ( z ) ,
or, equivalently
q ( z ) I α , β j f ( z ) .
If Ω is a simply connected domain and = h ( U ) for some conformal mapping h of U onto , then the class Φ I , 1 [ h ( U ) , q ] is expressed by   Φ I , 1 [ h , q ] . Proceeding similarly as in the previous section, the following outcome is a consequence of Theorem 9. □
Theorem 10.
Let ϕ Φ I , 1 [ h , q ] and assume h is analytic in U . If the functions f A ( n ) and I α , β j f ( z ) Q 0    fulfill the condition (20) and
ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z )
is univalent in U , then
h ( z ) ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z )
implies that
q ( z ) I α , β j f ( z ) .
Proof. 
The proof is deduce from Theorem 9. □
Next, we will give the existence of best subordinant of (22) for a suitable ψ .
Theorem 11.
Let ϕ : 4 × U ¯ be given by (9) and h be analytic in U . Assume the differential equation:
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z ) ,
has a solution q ( z ) Q 0 . If f ( z ) A ( n )   a n d   I α , β j f ( z ) Q 0 satisfy the conditions (20) and
ϕ   (   I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) , β > 0 ,  
is univalent in U , then (20) implies that
q ( z )     I α , β j f ( z )
and q ( z ) is the best subordinant.
Proof. 
From Theorem 9, we find that q ( z ) is a subordinant (22) since q ( z ) fulfills
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z ) ,
it is also a solution of the above differential equation and therefore q ( z ) will be subordinated by all subordinants. □
The following sandwich-type result is obtained by combining Theorem 4 and Theorem 10.
Theorem 12.
Let the functions h 1 ,   q 1   be analytic in U , h2 be univalent in U ,  q 2 ( z ) Q 0   with q 1 ( 0 ) = q 2 ( 0 ) = 1   and ϕ Φ Ι , 1 [ , h 2 , q 2 ] Φ I , 1 [   h 1 ,   q 1 ] .   If the functions f A ( n ) ,   I α , β j f ( z ) Q 0   and   ϕ ( I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z ) is univalent in   U , the conditions (4), (20) are satisfied, then
h 1 ( z )   ϕ   (   I α , β j f ( z ) , I α , β j + 1 f ( z ) , I α , β j + 2 f ( z ) , I α , β j + 3 f ( z ) ; z )     h 2 ( z ) ,
gives that
  q 1 ( z )     I α , β j f ( z )     q 2 ( z ) .
Proof. 
The result follows from Theorem 4 and Theorem 10, respectively. □
Next, we establish a new admissible class Φ Ι , 2 [ Ω , q ] below.
Definition 10.
Let   Ω   be a set in     and   q   ( q ( z ) 0 ) . The admissible functions class Φ Ι , 2 [ Ω , q ]   consists of those functions   ϕ : 4 × U ¯ which fulfill the admissibility condition
ψ ( u , v , x , y ; ζ ) Ω
whenever
u = q ( z ) ,         v =   z β q ( z ) + m ( α + β ) q ( z )     m ( α + β ) , Re {   ( α + β ) 2 x β 2 u + α 2 ( u 2 v ) 2 α β v β ( ( α + β ) v ( α + β ) u ) 2 } 1 m Re {   z q ( z ) q ( z ) + 1 }
and
Re   { ( α + β ) 3 y ( 3 α + 6 β ) ( α + β ) 2 x + 15 β α 2 v + 12 α β 2 v + 3 α 3 v α 3 u 6 α β u 3 + 5 β 3 u   β 2 ( v ( α + β ) ( α + β ) u ) + 11 } 1 m 2 Re {   z 2 q ( z ) q ( z ) } ,
( z U ,     β > 0   and   ζ U ,     m \ { 1 } ) .  
Theorem 13.
Let ψ Φ Ι , 2 [ Ω , q ] . If the functions f A ( n ) , I α , β j f ( z ) z Q 1 and   q ( q ( z ) 0 )   fulfill the following conditions:
Re { ζ q ( ζ ) q ( ζ ) } 0 ,     | ( α + β ) ( I α , β j + 1 f ( z ) I α , β j f ( z ) z ) | m β | q ( ζ ) | ,       β > 0  
ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z )
is univalent in U , then
Ω { ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) : z U } ,
implies
q ( z ) I α , β j f ( z ) z .    
Proof. 
Let the function w ( z ) be given by (14) and ψ be defined by (17). Since ψ   Φ I , 2 [ Ω , q ] ,   the Equations (24) and (18) imply
Ω ψ ( w ( z ) , z w ( z ) , z 2 w ( z ) , z 3 w ( z ) ; z ) .
This follows easily from (17) that the admissible condition for ψ   Φ I , 2 [ Ω , q ] in Definition 10 is equivalent to the admissible condition for ψ   Ψ I , 2 [ Ω , q ] as given in Definition 5 for n = 2. Hence, by using the conditions in (23) and applying Theorem 2, we find
q ( z ) w ( z ) .
If Ω   is a simply connected domain and = h ( U ) for some conformal mapping h of U on to , then the class   ψ   Φ I , 2 [ h ( U ) , q ] is expressed by   ψ   Φ I , 2 [ h , q ] . □
Theorem 14.
Let   ψ Φ I , 2 [ h ,   q ]  and h be analytic in U . If the functions f A ( n ) and I α , β j f ( z ) z Q 1  fulfills the condition (23) and
ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z )
is univalent in   U ,   then
h ( z ) ϕ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) ,
implies
q ( z ) I α , β j f ( z ) z , β > 0 .
Proof. 
It is clear that by using Theorem 13, we find the desired outcome. □
Theorem 15.
Let  ϕ : 4 × U ¯ , the function h be analytic in U and ψ be defined by (17). Assume that the differential equation
ψ ( q ( z ) , z q ( z ) , z 2 q ( z ) , z 3 q ( z ) ; z ) = h ( z )
has a solution q ( z ) Q 1 . If f A ( n )   and   I α , β j f ( z ) z Q 1 fulfills the condition (23) and
ϕ   (   I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z )
is univalent in U , then (25) gives that
q ( z ) I α , β j f ( z ) z ,
and q is the best subordinant.
Proof. 
The proof is similar to that of Theorem 8. □
The next sandwich-type outcome is obtained by combining Theorem 7 and Theorem 14.
Theorem 16.
Let the functions h 1 ,   q 1   be analytic in   U ,   h 2   be univalent in   U ,   q 2 Q 1   ( q 1 ( 0 ) = q 2 ( 0 ) = 1 )   and ϕ   Φ I , 2 [ h 2 , q 2 ] Φ I , 2 [ h 1 , q 1 ] .  If f ( z ) A ( n ) , I α , β j f ( z ) z Q 1 and
ψ ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z )
is univalent in U , the conditions (12), (23) are satisfied, then
    h 1 ( z ) ϕ   ( I α , β j f ( z ) z , I α , β j + 1 f ( z ) z , I α , β j + 2 f ( z ) z , I α , β j + 3 f ( z ) z ; z ) h 2 ( z ) ,
implies that
                  q 1 ( z ) I α , β j f ( z ) z q 2 ( z ) .

4. Conclusions and Future Work

We aim to give some outcomes for third-order differential subordination and superordination for analytic functions in U = { z : | z | < 1 }   involving the generalized operator I α , β j f . The outcomes are derived by investigating relevant classes of admissible functions. Some new outcomes on differential subordination and superordination with some sandwich theorems are expressed. Moreover, several particular cases are also noted. The properties and outcomes of the differential subordination are symmetry to the properties of the differential superordination to form the sandwich theorems. The outcomes included in this current paper reveal new ideas for continuing the study, and we open some windows for researchers to generalize the classes to establish new outcomes in univalent and multivalent function theory.

Author Contributions

Conceptualization, methodology, software, validation, formal analysis, investigation, resources, by S.A., data curation, writing—original draft preparation, writing—review and editing, visualization by R.A.H., supervision, project administration, funding acquisition, by W.G.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Miller, S.S.; Mocanu, P.T. Differential Subordination: Theory and Applications; Series on Monographs and Textbooks in Pure and Applied Mathematics; Marcel Dekker Incorporated: New York, NY, USA, 2000; Volume 225. [Google Scholar]
  2. Swamy, S.R. Inclusion Properties of Certain Subclasses of Analytic Functions. Int. Math. Forum 2012, 7, 1751–1760. [Google Scholar]
  3. Al-Oboudi, F.M. On Univalent Functions Defined by a Generalized Salagean Operator. Int. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
  4. Cho, N.E.; Srivastava, H.M. Argument Estimates of Certain Analytic Functions Defined by a Class of Multiplier Transformations. Math. Comput. Model. 2003, 37, 39–49. [Google Scholar] [CrossRef]
  5. Cho, N.E.; Kim, T.H. Multiplier Transformations and Strongly Close-to-Convex Functions. Bull. Korean Math. Soc. 2003, 40, 399–410. [Google Scholar] [CrossRef] [Green Version]
  6. Catas, A. On Certain Classes of p-Valent Functions Defined by Multiplier Transformations. In Proceedings of the International Symposium on Geometric Function Theory and Applications: GFTA 2007 Proceedings, Istanbul, Turkey, 20–24 August 2007; Owa, S., Polatog¸lu, Y., Eds.; TC İstanbul Kültür University Publications. TC İstanbul Kültür University: İstanbul, Turkey, 2008; Volume 91, pp. 241–250. [Google Scholar]
  7. Antonino, J.A.; Miller, S.S. Third-Order Differential Inequalities and Subordinations in the Complex Plane. Complex Var. Elliptic Equ. 2011, 56, 439–454. [Google Scholar] [CrossRef]
  8. Tang, H.; Deniz, E. Third-Order Differential Subordination Results for Analytic Functions Involving the Generalized Bessel Functions. Acta Math. Sci. 2014, 34, 1707–1719. [Google Scholar] [CrossRef]
  9. Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S.-H.; Ma, L. Third-Order Differential Superordination Involving the Generalized Bessel Functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
  10. Miller, S.S.; Mocanu, P.T. Subordinants of Differential Superordinations. Complex Var. Theory Appl. Int. J. 2003, 48, 815–826. [Google Scholar] [CrossRef]
  11. Miller, S.S.; Mocanu, P.T.; Reade, M.O. Subordination-preserving integral operators. Trans. Amer. Math. Soc. 1984, 283, 605–615. [Google Scholar] [CrossRef]
  12. Al-Ameedee, S.A.; Atshan, W.G.; Al-Maamori, F.A. On Sandwich Results of Univalent Functions Defined by a Linear Operator. J. Interdiscip. Math. 2020, 23, 803–809. [Google Scholar] [CrossRef]
  13. Atshan, W.G.; Ali, A.A.R. On Some Sandwich Theorems of Analytic Functions Involving Noor-Sălăgean Operator. Adv. Math. Sci. J. 2020, 9, 8455–8467. [Google Scholar] [CrossRef]
  14. Atshan, W.G.; Hassan, H.Z.; Yalcin, S. On Third-Order Differential Subordination Results for Univalent Functions Defined by Differential Operator. Uzb. Math. J. 2021, 65, 26–42. [Google Scholar]
  15. Agarwal, P.; Hyder, A.A.; Zakarya, M. Well-Posedness of Stochastic Modified Kawahara Equation. Adv. Differ. Equ. 2020, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
  16. AlNemer, G.; Zakarya, M.; El-Hamid, H.A.A.; Kenawy, M.R.; Rezk, H.M. Dynamic Hardy-Type Inequalities with Non-Conjugate Parameters. Alex. Eng. J. 2020, 59, 4523–4532. [Google Scholar] [CrossRef]
  17. Rezk, H.M.; AlNemer, G.; Abd El-Hamid, H.A.; Abdel-Aty, A.H.; Nisar, K.S.; Zakarya, M. Hilbert-Type Inequalities for Time Scale Nabla Calculus. Adv. Differ. Equ. 2020, 1, 1–21. [Google Scholar] [CrossRef]
  18. Ali, R.M.; Ravichandran, V.; Seenivasagan, N. Subordination and Superordination of the Liu-Srivastava Linear Operator on Meromorphic Functions. Bull. Malays. Math. Sci. Soc. 2008, 31, 193–207. [Google Scholar]
  19. Darweesh, A.M.; Atshan, W.G.; Battor, A.H.; Lupas, A.A. Third-Order Differential Subordination Results for Analytic Functions Associated with a Certain Differential Operator. Symmetry 2022, 14, 99. [Google Scholar] [CrossRef]
  20. Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New Concept on Fourth Hankel Determinant of a Certain Subclass of Analytic Functions. Afrika Matematika 2022, 33, 7. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Atshan, W.G.; Hiress, R.A.; Altınkaya, S. On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator. Symmetry 2022, 14, 418. https://doi.org/10.3390/sym14020418

AMA Style

Atshan WG, Hiress RA, Altınkaya S. On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator. Symmetry. 2022; 14(2):418. https://doi.org/10.3390/sym14020418

Chicago/Turabian Style

Atshan, Waggas Galib, Rajaa Ali Hiress, and Sahsene Altınkaya. 2022. "On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator" Symmetry 14, no. 2: 418. https://doi.org/10.3390/sym14020418

APA Style

Atshan, W. G., Hiress, R. A., & Altınkaya, S. (2022). On Third-Order Differential Subordination and Superordination Properties of Analytic Functions Defined by a Generalized Operator. Symmetry, 14(2), 418. https://doi.org/10.3390/sym14020418

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop