New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions
Abstract
:1. Introduction
2. Coefficient Bounds
3. Distortion Bounds
4. Radius of Starlikeness and Convexity
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alb Lupaş, A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Oros, G.I. On Special Differential Subordinations Using Fractional Integral of Sălăgean and Ruscheweyh Operators. Symmetry 2021, 13, 1553. [Google Scholar] [CrossRef]
- Alb Lupaş, A.; Cătaş, A. An Application of the Principle of Differential Subordination to Analytic Functions Involving Atangana–Baleanu Fractional Integral of Bessel Functions. Symmetry 2021, 13, 971. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Rashid, S.; Khalid, A.; Bazighifan, O.; Oros, G.I. New Modifications of Integral Inequalities via γ-Convexity Pertaining to Fractional Calculus and Their Applications. Mathematics 2021, 9, 1753. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Tariq, M.; Ahmad, H.; Kodamasingh, B.; Shaikh, A.A.; Botmart, T.; El-Shorbagy, M.A. Some Novel Fractional Integral Inequalities over a New Class of Generalized Convex Function. Fractal Fract. 2022, 6, 42. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Kashuri, A.; Mohammed, P.O.; Nonlaopon, K. Certain Inequalities Pertaining to Some New Generalized Fractional Integral Operators. Fractal Fract. 2021, 5, 160. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Ashraf, R.; Chu, Y.-M. New computation of unified bounds via a more general fractional operator using generalized Mittag-Leffler function in the kernel. Comput. Model. Eng. Sci. 2020, 126, 359–378. [Google Scholar] [CrossRef]
- Cătaş, A. On certain class of p-valent functions defined by a new multiplier transformations. In Proceedings of the Book of the International Symposium G.F.T.A., Istanbul, Turkey, 20–24 August 2007; Istanbul Kultur University: Istanbul, Turkey, 2007; pp. 241–250. [Google Scholar]
- Al-Oboudi, F.M. On univalent functions defined by a generalized Sălăgean operator. Ind. J. Math. Math. Sci. 2004, 27, 1429–1436. [Google Scholar] [CrossRef] [Green Version]
- Sălăgean, G.S. Subclasses of univalent functions. In Lecture Notes in Math; Springer: Berlin, Germany, 1983; Volume 1013, pp. 362–372. [Google Scholar]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Alb Lupaş, A. About some differential sandwich theorems using a multiplier transformation and Ruscheweyh derivative. J. Comput. Anal. Appl. 2016, 21, 1218–1224. [Google Scholar]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Najafzadeh, S.H.; Pezeshki, E. Some aspects of univalent holomorphic functions involving Ruscheweyh and Salagean operator. Analele Universităţii Oradea Fasc. Mat. 2013, XX, 61–70. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A. New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions. Symmetry 2022, 14, 419. https://doi.org/10.3390/sym14020419
Alb Lupaş A. New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions. Symmetry. 2022; 14(2):419. https://doi.org/10.3390/sym14020419
Chicago/Turabian StyleAlb Lupaş, Alina. 2022. "New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions" Symmetry 14, no. 2: 419. https://doi.org/10.3390/sym14020419
APA StyleAlb Lupaş, A. (2022). New Applications of Fractional Integral for Introducing Subclasses of Analytic Functions. Symmetry, 14(2), 419. https://doi.org/10.3390/sym14020419