Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions
Abstract
:1. Introduction
2. Study Regarding Function Class Coefficients
3. Distortion Results for Class
4. Properties of Partial Sums of Functions from Class
5. Relations of Inclusion Involving Class and Neighborhoods
6. Starlikeness and Convexity Properties
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alb Lupaş, A. Properties on a subclass of analytic functions defined by a fractional integral operator. J. Comput. Anal. Appl. 2019, 27, 506–510. [Google Scholar]
- Alb Lupaş, A. Inequalities for Analytic Functions Defined by a Fractional Integral Operator. In Frontiers in Functional Equations and Analytic Inequalities; Anastassiou, G., Rassias, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 731–745. [Google Scholar]
- Owa, S. On the distortion theorems I. Kyungpook Math. J. 1978, 18, 53–59. [Google Scholar]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Methods Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Cho, N.E.; Aouf, M.K.; Srivastava, R. The principle of differential subordination and its application to analytic and p-valent functions defined by a generalized fractional differintegral operator. Symmetry 2019, 11, 1083. [Google Scholar] [CrossRef] [Green Version]
- Alb Lupaş, A.; Oros, G.I. Differential Subordination and Superordination Results Using Fractional Integral of Confluent Hypergeometric Function. Symmetry 2021, 13, 327. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Shaqsi, K.; Darus, M.; Al-Janaby, H.F. Subordination Properties of Meromorphic Kummer Function Correlated with Hurwitz–Lerch Zeta-Function. Mathematics 2021, 9, 192. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some New Extensions on Fractional Differential and Integral Properties for Mittag-Leffler Confluent Hypergeometric Function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Kanas, S.; Stankiewicz, J. Univalence of confluent hypergeometric function. Ann. Univ. Mariae Curie-Sklodowska 1998, 1, 51–56. [Google Scholar]
- Oros, G.I. New Conditions for Univalence of Confluent Hypergeometric Function. Symmetry 2021, 13, 82. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. In Theory and Applications; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Juma, A.R.; Zirar, H. Properties on a subclass of p-valent functions defined by new operator Vpλ. Analele Univ. Oradea Fasc. Math. 2014, 21, 73–82. [Google Scholar]
- Yousef, A.T.; Salleh, Z.; Al-Hawary, T. On a class of p-valent functions involving generalized differential operator. Afr. Mat. 2021, 32, 275–287. [Google Scholar] [CrossRef]
- Khan, B.; Srivastava, H.M.; Khan, N.; Darus, M.; Ahmad, Q.Z.; Tahir, M. Applications of Certain Conic Domains to a Subclass of q-Starlike Functions Associated with the Janowski Functions. Symmetry 2021, 13, 574. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ghanim, F. A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions. Kragujev. J. Math. 2021, 45, 499–519. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Elmorsy, R.E. Certain subclasses of analytic functions with varying arguments associated with q-difference operator. Afr. Mat. 2021, 32, 621–630. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Arif, M.; Raza, M. Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Math. 2021, 6, 5869–5885. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alb Lupaş, A.; Oros, G.I. Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions. Symmetry 2022, 14, 427. https://doi.org/10.3390/sym14020427
Alb Lupaş A, Oros GI. Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions. Symmetry. 2022; 14(2):427. https://doi.org/10.3390/sym14020427
Chicago/Turabian StyleAlb Lupaş, Alina, and Georgia Irina Oros. 2022. "Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions" Symmetry 14, no. 2: 427. https://doi.org/10.3390/sym14020427
APA StyleAlb Lupaş, A., & Oros, G. I. (2022). Fractional Integral of a Confluent Hypergeometric Function Applied to Defining a New Class of Analytic Functions. Symmetry, 14(2), 427. https://doi.org/10.3390/sym14020427