Fourth Hankel Determinant Problem Based on Certain Analytic Functions
Abstract
:1. Introduction
- For :
- For :Krishna [4] derived a precise estimate of for the class of Bazilevič functions. On the other hand the sharp bound of for the class of close-to-convex functions remains unknown.
- For :He also thought that the bounds were still not sharp. Later, in 2018, Kwon improved the Zaprawa inequality for by achieving , and in 2021, Zaprawa refined this bound even further by establishing that for . In the papers [7,8], the non-sharp bounds of this determinant for the sets and , respectively, were also computed. They succeeded in achieving:
- For :
2. A Set of Lemmas
3. Main Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Noonan, W.; Thomas, D.K. On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc. 1976, 223, 337–346. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Janteng, S.; Halim, A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 13, 619–625. [Google Scholar]
- Krishna, D.V.; Reddy, T.R. Second Hankel determinant for the class of Bazilevic functions. Stud. Univ. Babes-Bolyai Math. 2015, 60, 413–420. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2007, 6, 1–7. [Google Scholar]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef] [Green Version]
- Arif, M.; Raza, M.; Tang, H.; Hussain, S.; Khan, H. Hankel determinant of order three for familiar subsets of analytic functions related with sine function. Open Math. 2019, 17, 1615–1630. [Google Scholar] [CrossRef]
- Shi, L.; Ali, I.; Arif, M.; Cho, N.E.; Hussain, S.; Khan, H. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain. Mathematics 2019, 7, 418. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 12. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Kaur, G.; Singh, G. Estimates of the fourth Hankel determinant for a class of analytic functions with bounded turnings involving cardioid domains. J. Nonlinear Convex Anal. 2021, 22, 511–526. [Google Scholar]
- Wang, Z.-G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Breaz, V.D.; Cătas, A.; Cotîrlă, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. An. Șt. Univ. Ovidius Constanța 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New Concept on Fourth Hankel Determinant of a Certain Subclass of Analytic Functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
- Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the family of functions with bounded turning. Bull. Korean Math. Soc. 2018, 55, 1703–1711. [Google Scholar]
- Khan, M.G.; Ahmad, B.; Sokol, J.; Muhammad, Z.; Mashwani, W.K.; Chinram, R.; Petchkaew, P. Coefficient problems in a class of functions with bounded turning associated with sine function. Eur. J. Pure Appl. Math. 2021, 14, 53–64. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Coefficient bounds for the inverse of a function with derivative in . Proc. Am. Math. Soc. 1983, 87, 251–257. [Google Scholar] [CrossRef]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. Comptes Rendus Math. 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Pommerenke, C. Univalent functions. In Mathematik, Lehrbucher, Vandenhoeck and Ruprecht; Vandenhoeck & Ruprecht: Gottingen, Germany, 1975. [Google Scholar]
- Bansal, D. Upper bound of second Hankel determinant for a new class of analytic functions. Appl. Math. Lett. 2013, 26, 103–107. [Google Scholar] [CrossRef] [Green Version]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.K.; Ravichandran, V.; Supramaniam, S. Bounds for the second Hankel determinant of certain univalent functions. J. Inequalities Appl. 2013, 2013, 729. [Google Scholar] [CrossRef] [Green Version]
- Mashwani, W.K.; Ahmad, B.; Khan, N.; Khan, M.G.; Arjika, S.; Khan, B.; Chinram, R. Fourth Hankel Determinant for a Subclass of Starlike Functions Based on Modified Sigmoid. J. Funct. Spaces 2021, 2021, 6116172. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Bulboacă, T. Hankel determinants for new subclasses of analytic functions related to a shell shaped region. Mathematics 2020, 8, 1041. [Google Scholar] [CrossRef]
- Raza, M.; Malik, S.N. Upper bound of the third Hankel determinant for a class of analytic functions related with lemniscate of Bernoulli. J. Inequalities Appl. 2013, 2013, 2378. [Google Scholar] [CrossRef] [Green Version]
- Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas Fis. Nat. Mat. 2021, 115, 49. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Tang, H. A Study of Fourth-Order Hankel Determinants for Starlike Functions Connected with the Sine Function. J. Funct. Spaces 2021, 2021, 9991460. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Arif, M.; Haq, M.; Khan, N.; Khan, M.; Ahmad, K.; Khan, B. Fourth Hankel Determinant Problem Based on Certain Analytic Functions. Symmetry 2022, 14, 663. https://doi.org/10.3390/sym14040663
Tang H, Arif M, Haq M, Khan N, Khan M, Ahmad K, Khan B. Fourth Hankel Determinant Problem Based on Certain Analytic Functions. Symmetry. 2022; 14(4):663. https://doi.org/10.3390/sym14040663
Chicago/Turabian StyleTang, Huo, Muhammad Arif, Mirajul Haq, Nazar Khan, Mustaqeem Khan, Khurshid Ahmad, and Bilal Khan. 2022. "Fourth Hankel Determinant Problem Based on Certain Analytic Functions" Symmetry 14, no. 4: 663. https://doi.org/10.3390/sym14040663
APA StyleTang, H., Arif, M., Haq, M., Khan, N., Khan, M., Ahmad, K., & Khan, B. (2022). Fourth Hankel Determinant Problem Based on Certain Analytic Functions. Symmetry, 14(4), 663. https://doi.org/10.3390/sym14040663