q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination
Abstract
:1. Introduction
2. Main Results
3. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Durege, H. Elements of the Theory of Functions of a Complex Variable with Especial Reference to the Methods of Riemann; Norwood Press: Ellistown, UK, 1896. [Google Scholar]
- Pierpont, J. Galois’ Theory of Algebraic Equations. Part II Irrational Resolv. Ann. Math. 1900, 2, 22–56. [Google Scholar] [CrossRef]
- Cayley, A. Obligations of Mathematics to Philosophy, and to Questions of Common Life—II. Science 1883, 36, 502–504. [Google Scholar] [CrossRef] [PubMed]
- Waldo, C.A. The relation of mathematics to engineering. Science 1904, 19, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeans, J. The Mathematical Theory of Electricity and Magnetism; Cambridge University Press: Cambridge, UK, 1908. [Google Scholar]
- Belokolos, E.D.; Bobenko, A.I.; Enolskii, V.Z.; Its, A.R.; Matveev, V.B. Algebro-Geometric Approach to Nonlinear Integrable Equations; Springer: New York, NY, USA, 1994. [Google Scholar]
- Fokas, A.S.; Sung, L.Y. Generalized Fourier transforms, their nonlinearization and the imaging of the brain. Not. Am. Math. Soc. 2005, 52, 1178–1192. [Google Scholar]
- Crowdy, D. Geometric function theory: A modern view of a classical subject. Nonlinearity 2008, 21, T205. [Google Scholar] [CrossRef]
- Jimbo, M.A. q-analogue of U(g[(N+1)), Hecke algebra, and the Yang-Baxter equation. Lett. Math. Phys. 1986, 11, 247–252. [Google Scholar] [CrossRef]
- Moak, D.S. The q-analogue of stirling’s formula. Rocky Mt. J. Math. 1984, 14, 403–413. [Google Scholar] [CrossRef]
- Moak, D.S. The q-analogue of the Laguerre polynomials. J. Math. Anal. Appl. 1981, 81, 20–47. [Google Scholar] [CrossRef] [Green Version]
- Cătaş, A.; Lupaş, A.A. Some Subordination Results for Atangana-Baleanu Fractional Integral Operator Involving Bessel Functions. Symmetry 2022, 14, 358. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S.; Çakmak, S. A Subclass of Bi-Univalent Functions Based on the Faber Polynomial Expansions and the Fibonacci Numbers. Mathematics 2019, 7, 160. [Google Scholar] [CrossRef] [Green Version]
- Atshan, W.G.; Rahman, I.A.R.; Lupaş, A.A. Some Results of New Subclasses for Bi-Univalent Functions Using Quasi-Subordination. Symmetry 2021, 13, 1653. [Google Scholar] [CrossRef]
- Buti, R.H. Properties of a Class of Univalent Functions defined by Integral Operator. Basrah J. Sci. A 2016, 34, 45–50. [Google Scholar]
- Akgül, A. Second-order differential subordinations on a class of analytic functions defined by Rafid-operator. Ukrains’ Kyi Mat. Zhurnal 2018, 70, 587–598. [Google Scholar] [CrossRef]
- Clunie, J.; Sheil-Small, T. Harmonic univalent functions. Ann. Acad. Sci. Fenn. Ser. A I Math. 1984, 9, 3–25. [Google Scholar] [CrossRef]
- Aral, A.; Agarwal, R.; Gupta, V. Applications of q-Calculus in Operator Theory; Springer: New York, NY, USA, 2013. [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Steyr, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Bieberbach-de Branges and Fekete-Szegö inequalities for certain families of q-convex and q-close-to-convex functions. J. Comput. Anal. Appl. 2019, 26, 639–649. [Google Scholar]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, O.P.; Çetinkaya, A.; Polatoğlu, Y. Harmonic Univalent Convex Functions Using A Quantum Calculus Approach. Acta Univ. Apulensis 2019, 58, 67–81. [Google Scholar]
- Jahangiri, J.M. Harmonic Univalent Functions Defined By q-Calculus Operators. Int. J. Math. Anal. Appl. 2018, 5, 39–43. [Google Scholar]
- Çakmak, S.; Yalçın, S.; Altınkaya, Ş. A new subclass of starlike harmonic functions defined by subordination. Al-Qadisiyah J. Pure Sci. 2020, 25, 36–39. [Google Scholar]
- Öztürk, M.; Yalçın, S.; Yamankaradeniz, M. Convex subclass of harmonic starlike functions. Appl. Math. Comput. 2004, 154, 449–459. [Google Scholar] [CrossRef]
- Yalçın, S.; Bayram, H. Some Properties on q-Starlike Harmonic Functions Defined by Subordination. Appl. Anal. Optim. 2020, 4, 299–308. [Google Scholar]
- Dziok, J. Classes of harmonic functions defined by subordination. Abstr. Appl. Anal. 2015, 2015, 756928. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, O.P.; Çetinkaya, A. Connecting Quantum calculus and Harmonic Starlike functions. Filomat 2020, 34, 1431–1441. [Google Scholar] [CrossRef]
- Jahangiri, J.M. Harmonic functions starlike in the unit disk. J. Math. Anal. Appl. 1999, 235, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Silverman, H. Harmonic univalent functions with negative coefficients. J. Math. Anal. Appl. 1998, 220, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Silverman, H.; Silvia, E.M. Subclasses of harmonic univalent functions. N. Z. J. Math. 1999, 28, 275–284. [Google Scholar]
- Öztürk, M.; Yalçın, S. On univalent harmonic functions. J. Inequal. Pure Appl. Math. 2002, 3–4, 61. [Google Scholar]
- Dziok, J. On Janowski harmonic functions. J. Appl. Anal. 2015, 21, 99–107. [Google Scholar] [CrossRef]
- Dziok, J. Classes of harmonic functions associated with Ruscheweyh derivatives. Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat. 2019, 113, 1315–1329. [Google Scholar] [CrossRef]
- Dziok, J.; Jahangiri, J.M.; Silverman, H. Harmonic functions with varying coefficients. J. Inequal. Appl. 2016, 2016, 139. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Yalçın, S.; Altınkaya, Ş. Subclasses of Harmonic Univalent Functions Associated with Generalized Ruscheweyh Operator. Publ. L’institut Math. Nouv. Ser. Tome 2019, 106, 19–28. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bayram, H. q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry 2022, 14, 708. https://doi.org/10.3390/sym14040708
Bayram H. q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry. 2022; 14(4):708. https://doi.org/10.3390/sym14040708
Chicago/Turabian StyleBayram, Hasan. 2022. "q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination" Symmetry 14, no. 4: 708. https://doi.org/10.3390/sym14040708
APA StyleBayram, H. (2022). q-Analogue of a New Subclass of Harmonic Univalent Functions Associated with Subordination. Symmetry, 14(4), 708. https://doi.org/10.3390/sym14040708