On Nonlinear Biharmonic Problems on the Heisenberg Group
Abstract
:1. Introduction
- For some ,
- uniformly in ;
- For some and ,
- .
2. Preliminaries
- (i)
- If then is continuously embedded in for ;
- (ii)
- If then is continuously embedded in for all ;
- (iii)
- If then is continuously embedded in for all .
- (i)
- There exist such that
- (ii)
- For any we have
3. Proof of Theorem 1
4. Epilogue
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pelantová, E.; Svobodová, M.; Tremblay, J. Fine grading of sl(p2,C) generated by tensor product of generalized Pauli matrices and its symmetries. J. Math. Phys. 2006, 47, 5341–5357. [Google Scholar] [CrossRef] [Green Version]
- Hrivnák, J.; Novotný, P.; Patera, J.; Tolar, J. Graded contractions of the Pauli graded sl(3,ℂ). Linear Algebra Appl. 2006, 418, 498–550. [Google Scholar] [CrossRef] [Green Version]
- Sulc, P.; Tolar, J. Group theoretical construction of mutually unbiased bases in Hilbert spaces of prime dimensions. J. Phys. A Math. Theor. 2007, 40, 15099–15111. [Google Scholar] [CrossRef] [Green Version]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267–320. [Google Scholar] [CrossRef]
- Patera, J.; Zassenhaus, H. On Lie gradings I. Linear Algebra Appl. 1989, 112, 87–159. [Google Scholar] [CrossRef] [Green Version]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Methuen: London, UK, 1931. [Google Scholar]
- Mumford, D. On the equations defining abelian varieties, I. Invent. Math. 1966, 1, 287–354. [Google Scholar] [CrossRef]
- Mumford, D. On the equations defining abelian varieties, II. Invent. Math. 1967, 3, 75–135. [Google Scholar] [CrossRef] [Green Version]
- Mumford, D. On the equations defining abelian varieties, III. Invent. Math. 1967, 3, 215–244. [Google Scholar] [CrossRef] [Green Version]
- Howe, R. On the role of the Heisenberg group in harmonic analysis. Bull. Am. Math. Soc. 1980, 3, 821–843. [Google Scholar] [CrossRef] [Green Version]
- Safari, F.; Razani, A. Existence of positive radial solution for Neumann problem on the Heisenberg group. Bound Values Probl. 2020, 2020, 88. [Google Scholar] [CrossRef]
- Kumar, D. Semilinear elliptic problems with singular terms on the Heisenberg group. Complex Var. Elliptic Equ. 2019, 64, 1844–1853. [Google Scholar] [CrossRef]
- Huang, G. Inequalities of eigenvalues for bi-Kohn Laplacien on Heisenberg group. Acta Math. Sci. 2010, 30, 125–131. [Google Scholar]
- Citti, G. Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian. Ann. Mat. Pura Appl. 1995, 169, 375–392. [Google Scholar] [CrossRef]
- An, Y.-C.; Liu, H. The Schrödinger-Poisson type system involving a critical nonlinearity on the first Heisenberg group. Israel J. Math. 2020, 235, 385–411. [Google Scholar] [CrossRef]
- Benci, V.; Cerami, G. Existence of positive solutions of the equation − in . J. Funct. Anal. 1990, 88, 90–117. [Google Scholar] [CrossRef] [Green Version]
- Cerami, G.; Solimini, S.; Struwe, M. Some existence results for superlinear elliptic boundary values problems involving critical exponents. J. Funct. Anal. 1986, 69, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Chaudhuri, N.; Ramaswamy, M. Existence of positive solutions of some semilinear elliptic equations with singular coefficients. Proc. R. Soc. Ed. Sect. A 2001, 131, 1275–1295. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. Existence of solutions for a nonlinear PDE with an inverse square potential. J. Differ. Equ. 2003, 195, 497–519. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. On a semilinear elliptic equation with singular term and Hardy-Sobolev critical growth. Math. Nachr. 2007, 208, 838–850. [Google Scholar] [CrossRef]
- Bordoni, S.; Filippucci, R.; Pucci, P. Existence Problems on Heisenberg Groups Involving Hardy and Critical Terms. J. Geom. Anal. 2020, 30, 1887–1917. [Google Scholar] [CrossRef]
- D’Onofrio, L.; Molica Bisci, G. Some remarks on gradient-type systems on the Heisenberg group. Complex Var. Elliptic Equ. 2020, 65, 1183–1197. [Google Scholar] [CrossRef]
- Kassymov, A.; Suragan, D. Multiplicity of positive solutions for a nonlinear equation with a Hardy potential on the Heisenberg group. Bull. Sci. Math. 2020, 165, 102916. [Google Scholar] [CrossRef]
- Molica Bisci, G.; Repovš, D.D. Gradient-type systems on unbounded domains of the Heisenberg group. J. Geom. Anal. 2020, 30, 1724–1754. [Google Scholar] [CrossRef] [Green Version]
- Pucci, P.; Temperini, L. Concentration-compactness results for systems in the Heisenberg group. Opuscula Math. 2020, 40, 151–163. [Google Scholar] [CrossRef]
- Ambrosetti, A.; Rabinowitz, P. Dual variational methods in critical point theory and applications. J. Funct. Anal. 1973, 14, 349–381. [Google Scholar] [CrossRef] [Green Version]
- Garofalo, N.; Lanconelli, E. Existence and nonexistence results for semilinear equations on the Heisenberg group. Indiana Univ. Math. J. 1992, 41, 71–98. [Google Scholar] [CrossRef]
- Loiudice, A. Improved Sobolev inequalities on the Heisenberg group. Nonlinear Anal. 2005, 62, 953–962. [Google Scholar] [CrossRef]
- Dwivedi, G.; Tyagi, J. Singular Adams inequality for biharmonic operator on Heisenberg group and its applications. Nonlinear Differ. Equ. Appl. 2016, 23, 58. [Google Scholar] [CrossRef] [Green Version]
- Papageorgiou, N.S.; Rădulescu, V.D.; Repovš, D.D. Nonlinear Analysis—Theory and Methods; Springer Monographs in Mathematics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Jabri, Y. The Mountain Pass Theorem: Variants, Generalizations and Some Applications; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Choudhuri, D. Existence and Hölder regularity of infinitely many solutions to a p-Kirchhoff-type problem involving a singular nonlinearity without the Ambrosetti-Rabinowitz (AR) condition. Z. Angew. Math. Phys. 2021, 72, 26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, J.; Taarabti, S.; An, T.; Repovš, D.D. On Nonlinear Biharmonic Problems on the Heisenberg Group. Symmetry 2022, 14, 705. https://doi.org/10.3390/sym14040705
Zuo J, Taarabti S, An T, Repovš DD. On Nonlinear Biharmonic Problems on the Heisenberg Group. Symmetry. 2022; 14(4):705. https://doi.org/10.3390/sym14040705
Chicago/Turabian StyleZuo, Jiabin, Said Taarabti, Tianqing An, and Dušan D. Repovš. 2022. "On Nonlinear Biharmonic Problems on the Heisenberg Group" Symmetry 14, no. 4: 705. https://doi.org/10.3390/sym14040705
APA StyleZuo, J., Taarabti, S., An, T., & Repovš, D. D. (2022). On Nonlinear Biharmonic Problems on the Heisenberg Group. Symmetry, 14(4), 705. https://doi.org/10.3390/sym14040705