Mathematical Modeling and Analysis of Tumor Chemotherapy
Abstract
:1. Introduction
2. The Model
2.1. Mathematical Model
- Both immune effector cells and chemotherapy decrease the tumor population.
- The population of effector cells decreases due to the degradation process, consumption when killing tumor cells, and the effect of chemotherapy.
- Chemotherapy drugs can affect tumor cells and immune effector cells through a mass-action mechanism.
- A higher constant input of the drug dose can result in both higher tumor and immune effector cell depletion.
2.2. The Reduced Model
3. Dynamics
3.1. Equilibria of Dimensionless Model
3.2. Stability of Equilibrium States
3.2.1. Dead Equilibrium State
3.2.2. Tumor-Free Equilibrium State
3.2.3. Tumor-Present Equilibrium State
3.2.4. Coexisting Equilibrium State
4. Parameter Sensitivity Analysis
5. Numerical Simulations
5.1. Numerical Simulations of the Equilibrium States
5.2. Simulations Using Different Immune Strengths
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biemar, F.; Foti, M. Global progress against cancer-challenges and opportunities. Cancer Biol. Med. 2013, 10, 183–186. [Google Scholar] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zheng, R.; Baade, P.D.; Zhang, S.; Zeng, H.; Bray, F.; Jemal, A.; Yu, X.Q.; He, J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016, 66, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, S.; Gholami, A.; Biros, G. Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect. J. Math. Biol. 2019, 79, 941–967. [Google Scholar] [CrossRef] [Green Version]
- Robertson-Tessi, M.; El-Kareh, A.; Goriely, A. A model for effects of adaptive immunity on tumor response to chemotherapy and chemoimmunotherapy. J. Theor. Biol. 2015, 380, 569–584. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, C. A mathematical model of cancer treatment by radiotherapy. Math. Comput. Simulat. 2014, 7, 172923. [Google Scholar] [CrossRef]
- Dakup, P.P.; Porter, K.I.; Little, A.A.; Zhang, H.; Gaddameedhi, S. Sex differences in the association between tumor growth and T cell response in a melanoma mouse model. Cancer Immunol. Immun. 2020, 69, 2157–2162. [Google Scholar] [CrossRef]
- Shahvaran, Z.; Kazemi, K.; Fouladivanda, M.; Helfroush, M.S.; Godefroy, O.; Aarabi, A. Morphological active contour model for automatic brain tumor extraction from multimodal magnetic resonance images. J. Neurosci. Meth. 2021, 362, 109296. [Google Scholar] [CrossRef]
- Pang, L.; Lin, S.; Zhong, Z. Mathematical modelling and analysis of the tumor treatment regimens with pulsed immunotherapy and chemotherapy. Comput. Math. Methods Med. 2016, 2016, 6260474. [Google Scholar] [CrossRef] [Green Version]
- Neoptolemos, J. A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N. Engl. J. Med. 2016, 350, 1200. [Google Scholar] [CrossRef] [Green Version]
- López, A.G.; Seoane, J.M.; Sanjuán, M.A.F. A validated mathematical model of tumor growth including tumor-host interaction, cell-mediated immune response and chemotherapy. Bull. Math. Biol. 2014, 76, 2884–2906. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Huang, J.; Dong, Y.; Takeuchi, Y. Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages. Appl. Math. Mol. 2020, 88, 758–773. [Google Scholar] [CrossRef]
- Roesch, K.; Hasenclever, D.; Scholz, M. Modelling Lymphoma Therapy and Outcome. Bull. Math. Biol. 2014, 76, 401–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, I.; Du, Y. Systemic radiotherapy of bone metastases with radionuclides. Clin. Oncol. 2021, 33, 98–105. [Google Scholar] [CrossRef]
- Glatzer, M.; Faivre-Finn, C.; Ruysscher, D.D.; Widder, J.; Van Houtte, P.; Troost, E.G.; Slotman, B.J.; Ramella, S.; Pöttgen, C.; Peeters, S.T.H.; et al. Role of radiotherapy in the management of brain metastases of NSCLC-Decision criteria in clinical routine. Radiother. Oncol. 2021, 154, 269–273. [Google Scholar] [CrossRef]
- Mulemba, T.; Bank, R.; Sabantini, M.; Chopi, V.; Chirwa, G.; Mumba, S.; Chasela, M.; Lemon, S.; Hockenberry, M. Improving peripheral intravenous catheter care for children with cancer receiving chemotherapy in Malawi. J. Pediatr. Nurs. 2021, 56, 13–17. [Google Scholar] [CrossRef]
- Dagher, O.; King, T.R.; Wellhausen, N.; Posey, A.D. Combination Therapy for Solid Tumors: Taking a Classic CAR on New Adventures. Cancer Cell 2020, 38, 621–623. [Google Scholar] [CrossRef]
- Magee, D.E.; Hird, A.E.; Klaassen, Z.; Sridhar, S.S.; Nam, R.K.; Wallis, C.J.D.; Kulkarni, G.S. Adverse event profile for immunotherapy agents compared with chemotherapy in solid organ tumors: A systematic review and meta-analysis of randomized clinical trials. Ann. Oncol. 2020, 31, 50–60. [Google Scholar] [CrossRef] [Green Version]
- Abernathy, Z.; Abernathy, K.; Stevens, J. A mathematical model for tumor growth and treatment using virotherapy. AIMS Math. 2020, 5, 4136–4150. [Google Scholar] [CrossRef]
- Mongkolkeha, C.; Dhananjay, G. Some common fixed point theorems for eneralized F-contraction involving w-distance with some applications to differential qquations. Mathematics 2019, 7, 32. [Google Scholar] [CrossRef] [Green Version]
- Yousef, A.; Bozkurt, F.; Abdeljawad, T. Mathematical modeling of the immune-chemotherapeutic treatment of breast cancer under some control parameters. Adv. Differ. Equ. 2020, 2020, 696. [Google Scholar] [CrossRef]
- Kumar, D.R. Common fixed point results under w-distance with applications to nonlinear integral equations and nonlinear fractional differential equations. Math. Slovaca 2021, 71, 1511–1528. [Google Scholar] [CrossRef]
- Guran, L.; Mitrović, Z.D.; Reddy, G.S.M.; Belhenniche, A.; Radenović, S. Applications of a fixed point result for solving nonlinear fractional and integral differential equations. Fractal Fract. 2021, 5, 211. [Google Scholar] [CrossRef]
- Sarkar, S.; Sahoo, P.K.; Mahata, S.; Pal, R.; Ghosh, D.; Mistry, T.; Ghosh, S.; Bera, T.; Nasare, V.D. Mitotic checkpoint defects: En route to cancer and drug resistance. Chromosome Res. 2021, 12, 131–144. [Google Scholar] [CrossRef]
- Feizabadi, M.S. Modeling multi-mutation and drug resistance: Analysis of some case studies. Theor. Biol. Med. Model. 2017, 14, 275–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, X.; Feng, Z.; Zheng, Y.; Zhao, Y. Bifurcation analysis and global dynamics of a mathematical model of antibiotic resistance in hospitals. J. Math. Biol. 2017, 75, 1463–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, G.; Tian, T.; Zhang, X. A mathematical model of cell-mediated immune response to tumor. Math. Biosci. Eng. 2021, 18, 373–385. [Google Scholar] [CrossRef]
- Yan, Y.; Jiang, F.; Zhang, X.; Tian, T. Integrated inference of asymmetric protein interaction networks using dynamic model and individual patient proteomics data. Symmetry 2021, 13, 1097. [Google Scholar] [CrossRef]
- Li, L.; Shao, M.; He, X.; Ren, S.; Tian, T. Risk of lung cancer due to external environmental factor and epidemiological data analysis. Math. Biosci. Eng. 2021, 18, 6079–6094. [Google Scholar] [CrossRef]
- Amer, A.; Nagah, A.; Tian, T.; Zhang, X. Mutation mechanisms of breast cancer among the female population in China. Curr. Bioinform. 2020, 15, 253–259. [Google Scholar] [CrossRef]
- Pang, L.; Liu, S.; Zhang, X.; Tian, T. Mathematical modeling and dynamic analysis of anti-tumor immune response. J. Appl. Math. Comput. 2020, 62, 473–488. [Google Scholar] [CrossRef]
- Li, L.; Tian, T.; Zhang, X. Stochastic modelling of multistage carcinogenesis and progression of human lung cancer. J. Theor. Biol. 2019, 479, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Diefenbach, A.; Jensen, E.; Jamieson, A.; Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumor immunity. Theor. Nat. 2001, 413, 165–171. [Google Scholar]
- Yates, A.; Callard, R. Cell death and the maintenance of immunological memory. Discret. Contin. Dyn. Syst.-B 2002, 1, 43–59. [Google Scholar] [CrossRef]
- Lanzavecchia, A.; Sallusto, F. Dynamics of T lymphocyte responses: Intermediates, effectors, and memory cells. Science 2000, 290, 92–97. [Google Scholar] [CrossRef]
- Dudley, M.E.; Wunderlich, J.R.; Robbins, P.F.; Yang, J.C.; Hwu, P.; Schwartzentruber, D.J.; Topalian, S.L.; Sherry, R.; Restifo, N.P.; Hubicki, A.M.; et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002, 298, 850–854. [Google Scholar] [CrossRef] [Green Version]
- Delisi, C.; Rescigno, A. Immune surveillance and neoplasia. I. A minimal mathematical model. Bull. Math. Biol. 1977, 39, 201–221. [Google Scholar]
- Chen, L. Mathematical Models and Methods in Ecology; Science Press: Beijing, China, 1988; pp. 174–198. (In Chinese) [Google Scholar]
Parameters | Units | Description | Value | Reference |
---|---|---|---|---|
a | day | Growth rate of NK cells | none | none |
b | cell | Inverse of NK cells capacity | fitting | |
c | day | Growth rate of tumor | [33] | |
d | cell | Inverse of tumor capacity | [33] | |
r | cell day | Activation rate of CTLs | [34,35] | |
day | CTL death rate | [34] | ||
cell day | NK cell death rate | [33] | ||
cell day | Tumor death rate of NK | [33,36] | ||
cell day | CTL death rate | [37] | ||
cell day | Rate of CTL-induced tumor death | fitting | ||
v | dose | Influx of drug | none | none |
day | Drug decay rate | [12] | ||
day | Immune cell killed by drug | [12] | ||
day | Tumor cell killed by drug | [12] |
No. | p | k | f | Equilibrium Points |
---|---|---|---|---|
1 | + | + | ||
2 | ||||
3 | + |
No. | p | k | f | Equilibrium Points |
---|---|---|---|---|
1 | ||||
2 | ||||
3 | ||||
4 | ||||
5 | ||||
6 |
No. | p | k | s | f | Equilibrium Points |
---|---|---|---|---|---|
1 | 10 | 10 | |||
2 | 10 | 10 | 1 | ||
3 | 20 | 10 | |||
4 | 20 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, G.; Liang, G.; Tian, T.; Zhang, X. Mathematical Modeling and Analysis of Tumor Chemotherapy. Symmetry 2022, 14, 704. https://doi.org/10.3390/sym14040704
Song G, Liang G, Tian T, Zhang X. Mathematical Modeling and Analysis of Tumor Chemotherapy. Symmetry. 2022; 14(4):704. https://doi.org/10.3390/sym14040704
Chicago/Turabian StyleSong, Ge, Guizhen Liang, Tianhai Tian, and Xinan Zhang. 2022. "Mathematical Modeling and Analysis of Tumor Chemotherapy" Symmetry 14, no. 4: 704. https://doi.org/10.3390/sym14040704
APA StyleSong, G., Liang, G., Tian, T., & Zhang, X. (2022). Mathematical Modeling and Analysis of Tumor Chemotherapy. Symmetry, 14(4), 704. https://doi.org/10.3390/sym14040704