Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator
Abstract
:1. Introduction
- (1)
- Letting in Definitions 1 and 2, we obtain the classes and defined by Owa et al. [25].
- (2)
- (3)
- Letting and in Definitions 1 and 2, we obtain the classes of starlike functions of order and of convex functions of order .
- (1)
- Letting , we obtain the classes and .
- (2)
- Letting and , we obtain the classes of starlike functions of order and of convex functions of order defined by Silverman [26].
2. Coefficient Bounds
- (i)
- For ,
- (ii)
- For ,
- (iii)
- (iv)
3. Quasi-Hadamard Products
4. Partial Sums
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. Univalent Functions, Volume I and II; Polygonal Pub. House: Washington, DC, USA, 1983. [Google Scholar]
- Jackson, F.H. On q- functions and a certain difference operator. Trans. Royal Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. q-difference equations. Amer. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Quart. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Cătaş, A. On the Fekete-Szegö problem for meromorphic functions associated with (p,q)-Wright-type hypergeometric function. Symmetry 2021, 13, 2143. [Google Scholar] [CrossRef]
- Gasper, G.; Rahman, M. Basic Hypergeometric Series; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Ghany, H.A. q-Derivative of basic hypergeomtric series with respect to parameters. Int. J. Math. Anal. 2009, 3, 1617–1632. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2001. [Google Scholar]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functionS. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Noor, K.I. On generalized q-close-to-convexity. Appl. Math. Inf. Sci. 2017, 11, 1383–1388. [Google Scholar] [CrossRef]
- Noor, K.I.; Riaz, S. Generalized q-starlike functions. Stud. Sci. Math. Hung. 2017, 54, 509–522. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotîrlǎ, L.I. Coefficient estimates and the Fekete-Szegö problem for new classes of m-fold symmetric bi-univalent functions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Seoudy, T.M.; Aouf, M.K. Coefficient estimates of new classes of q-starlike and q-convex functions of complex order. J. Math. Inequal. 2016, 10, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Shamsan, H.; Latha, S. On generalized bounded Mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67–83. [Google Scholar] [CrossRef]
- Shehata, A. On q-Horn hypergeometric functions H6 and H7. Axioms 2021, 10, 336. [Google Scholar] [CrossRef]
- Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.-L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Revista Real Academia Ciencias Exactas Físicas Naturales Serie A Matemáticas 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Uçar, Ö.; Mert, O.; Polatoǧlu, Y. Some properties of q-close-to-convex functions. Hacet. J. Math. Stat. 2017, 46, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Wanas, A.K. Horadam polynomials for a new family of λ-pseudo bi-univalent functions associated with Sakaguchi type functions. Afr. Mat. 2021, 32, 879–889. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Mathamtical Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Das, R.N.; Singh, P. On subclasses of schlicth mapping. Indian J. Pure Appl. Math. 1977, 8, 864–872. [Google Scholar]
- Owa, S.; Sekine, T.; Yamakawa, R. On Sakaguchi type functions. Appl. Math. Comput. 2007, 187, 356–361. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Am. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Owa, S. On the classes of univalent functions with negative coefficients. Math. Japon. 1982, 27, 409–416. [Google Scholar]
- Kumar, V. Hadamard product of certain starlike functions II. J. Math. Anal. Appl. 1986, 113, 230–234. [Google Scholar] [CrossRef] [Green Version]
- Sheil-Small, T. A note on partial sums of convex schlicht functions. Bull. Lond. Math. Soc. 1970, 2, 165–168. [Google Scholar] [CrossRef]
- Silvia, E.M. On partial sums of convex functions of order alpha. Houst. J. Math. 1985, 11, 397–404. [Google Scholar]
- Silverman, H. Partial sums of starlike and convex functions. J. Math. Anal. Appl. 1997, 209, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çetinkaya, A.; Cotîrlă, L.-I. Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator. Symmetry 2022, 14, 709. https://doi.org/10.3390/sym14040709
Çetinkaya A, Cotîrlă L-I. Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator. Symmetry. 2022; 14(4):709. https://doi.org/10.3390/sym14040709
Chicago/Turabian StyleÇetinkaya, Asena, and Luminiţa-Ioana Cotîrlă. 2022. "Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator" Symmetry 14, no. 4: 709. https://doi.org/10.3390/sym14040709
APA StyleÇetinkaya, A., & Cotîrlă, L. -I. (2022). Quasi-Hadamard Product and Partial Sums for Sakaguchi-Type Function Classes Involving q-Difference Operator. Symmetry, 14(4), 709. https://doi.org/10.3390/sym14040709