Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus
Abstract
:1. Introduction
2. Preliminaries of -Calculus and Some Inequalities
3. Identities
4. Simpson’s 1/3 Formula Type Inequalities
5. Simpson’s 3/8 Formula Type Inequalities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hudzik, H.; Maligrada, L. Some remarks on s-convex functions. Aequ. Math. 1994, 48, 100–111. [Google Scholar] [CrossRef]
- AlNemer, G.; Ahmed, I.S.; Zakarya, M.; El-Hamid, H.A.A.; Hoda, A.; Bazighifan, O.; Rezk, H.M. Some New Reverse Hilbert’s Inequalities on Time Scales. Symmetry 2021, 13, 2431. [Google Scholar] [CrossRef]
- AlNemer, G.; Kenawy, M.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Generalizations of Hardy’s type inequalities via conformable calculus. Symmetry 2021, 13, 242. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Pearce, C.E.M. Selected Topics on Hermite—Hadamard Inequalities and Applications; RGMIA Monographs, Victoria University: Footscray, Australia, 2000. [Google Scholar]
- Pećarixcx, J.E.; Proschan, F.; Tong, Y.L. Convex Functions, Partial Orderings and Statistical Applications; Academic Press: Boston, MA, USA, 1992. [Google Scholar]
- El-Hamid, H.A.A.; Rezk, H.M.; Ahmed, A.M.; AlNemer, G.; Zakarya, M.; Saify, H.A.E. Some dynamic Hilbert-type inequalities for two variables on time scales. J. Inequal. Appl. 2021, 2021, 1–21. [Google Scholar] [CrossRef]
- Dragomir, S.S.; Fitzpatrick, S. The Hadamard’s inequality for s-convex functions in the second sense. Demonstr. Math. 1999, 32, 687–696. [Google Scholar]
- Mihesan, V.G. A generalization of the convexity. In Seminar on Functional Equations; Approx. and Convex.: Cluj-Napoca, Romania, 1993. [Google Scholar]
- Ernst, T. A Comprehensive Treatment of q-Calculus; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Benatti, F.; Fannes, M.; Floreanini, R.; Petritis, D. Quantum Information, Computation and Cryptography: An Introductory Survey of Theory, Technology and Experiments; Springer Science and Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Bokulich, A.; Jaeger, G. Philosophy of Quantum Information Theory and Entaglement; Cambridge Uniersity Press: Cambridge, UK, 2010. [Google Scholar]
- Jackson, F.H. On a q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Al-Salam, W. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive difference equations. Adv. Differ. Equ. 2013, 2013, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bermudo, S.; Kórus, P.; Valdés, J.N. On q-Hermite—Hadamard inequalities for general convex functions. Acta Math. Hung. 2020, 162, 364–374. [Google Scholar] [CrossRef]
- Alp, N.; Sarikaya, M.Z.; Kunt, M.; İşcan, I. q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions. J. King Saud Univ. Sci. 2018, 30, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Alp, N.; Sarikaya, M.Z. Hermite Hadamard’s type inequalities for co-ordinated convex functions on quantum integral. Appl. Math. E-Notes 2020, 20, 341–356. [Google Scholar]
- Budak, H.; Ali, M.A.; Tarhanaci, M. Some new quantum Hermite—Hadamard-like inequalities for coordinated convex functions. J. Optim. Theory Appl. 2020, 186, 899–910. [Google Scholar] [CrossRef]
- Jhanthanam, S.; Tariboon, J.; Ntouyas, S.K.; Nonlaopon, K. On q-Hermite—Hadamard inequalities for differentiable convex functions. Mathematics 2019, 7, 632. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Amer, M.; Junjua, M.U.; Hussain, S.; Shahzadi, G. Some (p, q)-estimates of Hermite—Hadamard—Type inequalities for coordinated convex and quasi-convex functions. Mathematics 2019, 7, 683. [Google Scholar] [CrossRef] [Green Version]
- Kalsoom, H.; Rashid, S.; Idress, M.; Chu, Y.-M.; Baleanu, D. Two—Variable quantum integral inequalities of Simpson—Type based on higher—Order generalized strongly preinvex and quasi—Preinvex functions. Symmetry 2020, 12, 51. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Hefeng, Z. Some quantum estimates of Hermite—Hadamard inequalities for convex functions. J. Appl. Anal. Comput. 2016, 7, 501–522. [Google Scholar]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum estimates for Hermite—Hadamard inequalities. Appl. Math. Comput. 2015, 251, 675–679. [Google Scholar] [CrossRef]
- Noor, M.A.; Noor, K.I.; Awan, M.U. Some quantum integral inequalities via preinvex functions. Appl. Math. Comput. 2015, 269, 242–251. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Abbas, M.; Chu, Y.-M. Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives. Adv. Differ. Equ. 2021, 2021, 7. [Google Scholar] [CrossRef]
- Khan, M.A.; Noor, M.; Nwaeze, E.R.; Chu, Y.-W. Quantum Hermite—Hadamard inequality by means of a Green function. Adv. Differ. Equ. 2020, 2020, 99. [Google Scholar] [CrossRef]
- Budak, H.; Erden, S.; Ali, M.A. Simpson and Newton type inequalities for convex functions via newly defined quantum integrals. Math. Meth. Appl. Sci. 2020, 44, 378–390. [Google Scholar] [CrossRef]
- Ali, M.A.; Budak, H.; Zhang, Z.; Yildrim, H. Some new Simpson’s type inequalities for co-ordinated convex functions in quantum calculus. Math. Meth. Appl. Sci. 2021, 44, 4515–4540. [Google Scholar] [CrossRef]
- Ali, M.A.; Abbas, M.; Budak, H.; Agarwal, P.; Murtaza, G.; Chu, Y.-W. New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 2021, 2021, 64. [Google Scholar] [CrossRef]
- Vivas-Cortez, M.; Ali, M.A.; Kashuri, A.; Sial, I.B.; Zhang, Z. Some New Newton’s Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus. Symmetry 2020, 12, 1476. [Google Scholar] [CrossRef]
- Sial, I.B.; Mei, S.; Ali, M.A.; Nonlaopon, K. On Some Generalized Simpson’s and Newton’s Inequalities for (α, m)-Convex Functions in q-Calculus. Mathematics 2021, 9, 3266. [Google Scholar] [CrossRef]
- Qaisar, S.; He, C.; Hussain, S. A generalizations of Simpson’s type inequality for differentiable functions using (α, m)-convex functions and applications. J. Inequal. Appl. 2013, 2013, 158. [Google Scholar] [CrossRef] [Green Version]
- Alomari, M.; Darus, M.; Dragomir, S.S. New inequalities of Simpson’s type for s-convex functions with applications. RGMIA Res. Rep. Coll. 2009, 12, 9. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soontharanon, J.; Ali, M.A.; Budak, H.; Nonlaopon, K.; Abdullah, Z. Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus. Symmetry 2022, 14, 736. https://doi.org/10.3390/sym14040736
Soontharanon J, Ali MA, Budak H, Nonlaopon K, Abdullah Z. Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus. Symmetry. 2022; 14(4):736. https://doi.org/10.3390/sym14040736
Chicago/Turabian StyleSoontharanon, Jarunee, Muhammad Aamir Ali, Hüseyin Budak, Kamsing Nonlaopon, and Zoya Abdullah. 2022. "Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus" Symmetry 14, no. 4: 736. https://doi.org/10.3390/sym14040736
APA StyleSoontharanon, J., Ali, M. A., Budak, H., Nonlaopon, K., & Abdullah, Z. (2022). Simpson’s and Newton’s Type Inequalities for (α,m)-Convex Functions via Quantum Calculus. Symmetry, 14(4), 736. https://doi.org/10.3390/sym14040736