Diagonals of Rational Functions: From Differential Algebra to Effective Algebraic Geometry
Abstract
:1. Introduction
2. Classical Modular Forms and Diagonals of 9- and 10-Parameter Families of Rational Functions
2.1. Nine-Parameter Rational Functions Giving Pullbacked Hypergeometric Functions for Their Diagonals
2.2. Ten-Parameter Rational Functions Giving Pullbacked Hypergeometric Functions for Their Diagonals
3. Deducing Creative Telescoping Results from Effective Algebraic Geometry
3.1. Revisiting the Pullbacked Hypergeometric Results in an Algebraic Geometry Perspective
3.1.1. Nine-Parameter Case
3.1.2. Ten-Parameter Case
3.2. Finding Creative Telescoping Results from -Invariant Calculations
3.3. Pullbacked Functions for Higher Genus Curves: Monomial Transformations
3.4. Changing the Parameters into Functions of the Product
4. Creative Telescoping on Rational Functions of More than Three Variables Associated with Products or Foliations of Elliptic Curves
Creative Telescoping on Rational Functions of Five Variables Associated with Products or Foliations of Three Elliptic Curves
5. Creative Telescoping of Rational Functions in Three Variables Associated with Genus-Two Curves with Split Jacobians
5.1. Periods of Extremal Rational Surfaces
5.2. Split Jacobians
5.3. Creative Telescoping on Rational Functions in Three Variables Associated with Genus-Two Curves with Split Jacobians: A Two-Parameter Example
5.4. Creative Telescoping on Rational Functions of Three Variables Associated with Genus-Two Curves with Split Jacobians: A Simple Example
6. Rational Functions with Tri-Quadratic Denominator and -Quadratic Denominator
6.1. Rational Functions with Tri-Quadratic Denominator Simply Corresponding to Elliptic Curves
6.2. Rational Functions with Tri-Quadratic Denominator: Fricke Cubics Examples Associated with Painlevé VI Equations
7. Telescopers of Rational Functions of Several Variables
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Diagonals of Rational Functions and Picard–Fuchs Equations
Appendix B. Maximum Number of Parameters for Families of Planar Elliptic Curves
Appendix C. Monomial Transformations Preserving Pullbacked Hypergeometric Results
Appendix D. Weierstrass and Legendre Forms
Appendix D.1. K3 Surfaces as Products or Foliations of Two Elliptic Curves
Appendix D.2. Calabi–Yau Threefolds as Foliation in Three Elliptic Curves
Appendix E. Rational Functions with Tri-Quadratic and N-Quadratic Denominators
Appendix E.1. Rational Functions with Tri-Quadratic Denominators
Appendix E.2. Rational Functions with N-Quadratic Denominators
Appendix F. Telescopers of Rational Functions of Several Variables: Some Examples
Appendix F.1. Telescopers of Rational Functions of Several Variables: A Second Example with Four Variables
Appendix F.2. Telescopers of Rational Functions of Several Variables: A Third Example with Four Variables
References
- Abdelaziz, Y.; Boukraa, S.; Koutschan, C.; Maillard, J.-M. Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms. J. Phys. 2018, 51, 455201. [Google Scholar]
- Abdelaziz, Y.; Boukraa, S.; Koutschan, C.; Maillard, J.-M. Diagonals of rational functions, pullbacked 2F1 hypergeometric functions and modular forms (unabridged version). arXiv 2018, arXiv:1805.04711v1. [Google Scholar]
- HolonomicFunctions Package Version 1.7.1 (9-October-2013) written by Christoph Koutschan; Copyright 2007–2013; Research Institute for Symbolic Computation (RISC), Johannes Kepler University: Linz, Austria, 2018.
- Christol, G. Diagonales de fractions rationnelles et équations différentielles. In Study Group on Ultrametric Analysis, 10th Year: 1982/83, No. 2, Exp. No. 18; Institute Henri Poincaré: Paris, France, 1984; pp. 1–10. Available online: http://archive.numdam.org/article/GAU_1982-1983__10_2_A4_0.pdf (accessed on 10 June 2022).
- Christol, G. Diagonales de Fractions Rationnelles et Équations de Picard-Fuchs. In Groupe de Travail D’analyse Ultramétrique, Tome 12 (1984–1985) no. 1, Exposé no. 13, 12p. 1984. Available online: http://archive.numdam.org/article/GAU_1984-1985__12_1_A8_0.pdf (accessed on 10 June 2022).
- Christol, G. Diagonales de fractions rationnelles. In Séminaire de Théorie des Nombres, Paris 1986–87 (Progr. Math. vol. 75); Birkhäuser Boston: Boston, MA, USA, 1988; pp. 65–90. [Google Scholar]
- Christol, G. Globally Bounded Solutions of Differential Equations, Analytic Number Theory (Tokyo, 1988) (Lecture Notes in Math. 1434); Springer: Berlin, Germany, 1990; pp. 45–64. [Google Scholar] [CrossRef]
- Lipshitz, L.; van der Poorten, A.J. Rational functions, diagonals, automata and arithmetic. In Number Theory (Banff, AB, 1988); de Gruyter: Berlin, Germany, 1990; pp. 339–358. [Google Scholar]
- Lipshitz, L. The diagonal of a D-finite power series is D-finite. J. Algebra 1988, 113, 373–378. [Google Scholar] [CrossRef] [Green Version]
- Denef, J.; Lipshitz, L. Algebraic power series and diagonals. J. Number Theory 1987, 26, 46–67. [Google Scholar] [CrossRef] [Green Version]
- Bostan, A.; Boukraa, S.; Maillard, J.-M.; Weil, J.-A. Diagonal of rational functions and selected differential Galois groups. J. Phys. A Math. Theor. 2015, 48, 504001. [Google Scholar] [CrossRef] [Green Version]
- Maier, R.S. On rationally parametrized modular equations. J. Ramanujan Math. Soc. 2009, 24, 1–73. Available online: http://arxiv.org/abs/math/0611041 (accessed on 10 June 2022).
- Glasser, M.L.; Guttmann, A.J. Lattice Green function (at 0) for the 4D hypercubic lattice. J. Phys. A 1994, 27, 7011–7014. Available online: http://arxiv.org/abs/cond-mat/9408097 (accessed on 10 June 2022). [CrossRef]
- Guttmann, A.J. Lattice Green’s functions in all dimensions. J. Phys. A 2010, 43, 305205. [Google Scholar] [CrossRef] [Green Version]
- Zenine, N.; Hassani, S.; Maillard, J.-M. Lattice Green Functions: The seven-dimensional face-centred cubic lattice. J. Phys. A Math. Theor. 2015, 48, 035205. [Google Scholar] [CrossRef] [Green Version]
- Hassani, S.; Koutschan, C.; Maillard, J.-M.; Zenine, N. Lattice Green Functions: The d-dimensional face-centred cubic lattice, d=8,9,10,11,12. J. Phys. A Math. Theor. 2016, 49, 164003. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, Y.; Boukraa, S.; Koutschan, C.; Maillard, J.-M. Heun functions and diagonals of rational functions. J. Phys. A Math. Theor. 2020, 53, 075206. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, Y.; Boukraa, S.; Koutschan, C.; Maillard, J.-M. Heun functions and diagonals of rational functions (unabridged version). arXiv 2019, arXiv:1910.10761. [Google Scholar]
- Bostan, A.; Boukraa, S.; Christol, G.; Hassani, S.; Maillard, J.-M. Ising n-fold integrals as diagonals of rational functions and integrality of series expansions. J. Phys. A Math. Theor. 2013, 46, 185202. [Google Scholar] [CrossRef] [Green Version]
- Bostan, A.; Boukraa, S.; Christol, G.; Hassani, S.; Maillard, J.-M. Ising n-fold integrals as diagonals of rational functions and integrality of series expansions: Integrality versus modularity Preprint. arXiv 2012, arXiv:1211.6031. [Google Scholar]
- Assis, M.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J.-M.; McCoy, B.M. Diagonal Ising susceptibility: Elliptic integrals, modular forms and Calabi-Yau equations. J. Phys. A 2012, 45, 075205. [Google Scholar] [CrossRef] [Green Version]
- Boukraa, S.; Hassani, S.; Maillard, J.-M.; Weil, J.-A. Differential algebra on lattice Green functions and Calabi-Yau operators. J. Phys. A Math. Theor. 2014, 48, 095203. [Google Scholar] [CrossRef]
- Bostan, A.; Boukraa, S.; Guttmann, A.J.; Hassani, S.; Jensen, I.; Maillard, J.-M.; Zenine, N. High order Fuchsian equations for the square lattice Ising model: χ˜(5). J. Phys. A Math. Theor. 2009, 42, 275209. [Google Scholar] [CrossRef]
- Boukraa, S.; Hassani, S.; Jensen, I.; Maillard, J.-M.; Zenine, N. High-order Fuchsian equations for the square lattice Ising model: χ(6). J. Phys. A Math. Theor. 2010, 43, 115201. [Google Scholar] [CrossRef] [Green Version]
- Boukraa, S.; Hassani, S.; Maillard, J.-M.; Zenine, N. Singularities of n-fold integrals of the Ising class and the theory of elliptic curves. J. Phys. A Math. Theor. 2007, 40, 11713–11748. [Google Scholar] [CrossRef] [Green Version]
- Assis, M.; van Hoeij, M.; Maillard, J.-M. The perimeter generating functions of three-choice, imperfect, and one-punctured staircase polygons. J. Phys. A Math. Theor. 2016, 49, 214002. [Google Scholar] [CrossRef] [Green Version]
- Van Straten, D. Calabi-Yau operators. arXiv 2017, arXiv:1704.00164v1. [Google Scholar]
- Bostan, A.; Lairez, P.; Salvy, B. Creative telescoping for rational functions using the Griffiths-Dwork method. In Proceedings of the 38th International Symposium on Symbolic and Algebraic Computation, Boston, MA, USA, 26–29 June 2013; pp. 93–100. Available online: http://specfun.inria.fr/bostan/publications/BoLaSa13.pdf (accessed on 10 June 2022).
- Chen, S.; Kauers, M.; Singer, M.F. Telescopers for Rational and Algebraic Functions via Residues. In Proceedings of the 37th International Symposium on Symbolic and Algebraic Computation, Grenoble, France, 22–25 July 2012; pp. 130–137. [Google Scholar]
- Takeuchi, K. Commensurability classes of arithmetic triangle groups. J. Fac. Science Univ. Tokyo Sec. IA Math. 1977, 24, 201–212. [Google Scholar]
- Voight, J. Shimura curves of genus at most two. Math. Comp. 2009, 78, 1155–1172. [Google Scholar] [CrossRef] [Green Version]
- Doran, C.F.; Malmendier, A. Calabi-Yau Manifols Realizing Symplectically Rigid Monodromy Tuples. Available online: https://arxiv.org/pdf/1503.07500.pdf (accessed on 10 June 2022).
- Malmendier, A.; Shaska, T. (Eds.) Higher Genus Curves in Mathematical Physics and Arithmetic Geometry, Contemporary Mathematics, AMS Special Session Higher Genus Curves and Fibrations in Mathematical Physics and Arithmetic Geometry. January 2016. Available online: https://www.amazon.com/Higher-Mathematical-Physics-Arithmetic-Geometry/dp/1470428563 (accessed on 10 June 2022).
- Chyzak, F. The ABC of Creative Telescoping-Algorithms, Bounds, Complexity. 2014. Available online: https://tel.archives-ouvertes.fr/tel-01069831/document (accessed on 10 June 2022).
- Lairez, P. Périodes d’intégrales Rationnelles: Algorithmes et Applications, Thèse de Doctorat. Available online: https://pierre.lairez.fr/these.pdf (accessed on 10 June 2022).
- Zeilberger, D. The Method of Creative Telescoping. J. Symb. Comput. 1991, 11, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Kontsevich, M.; Zagier, D. Periods, IHES/M/01/22. 2001. Available online: https://www.maths.ed.ac.uk/~v1ranick/papers/kontzagi.pdf (accessed on 10 June 2022).
- Igusa, J.I. Abstract vanishing cycle theory. Proc. Jpn. Acad. 1958, 34, 589–593. [Google Scholar] [CrossRef]
- Deligne, P. Intégration sur un cycle évanescent. In Inventiones Math; Springer: New York, NY, USA, 1983; Volume 76, pp. 1-29–1-43. [Google Scholar]
- Lairez, P. Computing periods of rational integrals. Math. Comput. 2016, 85, 1719–1752. [Google Scholar] [CrossRef] [Green Version]
- Chyzak, F. An extension of Zeilberger’s fast algorithm to general holonomic functions. Discret. Math. 2000, 217, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Koutschan, C. A fast approach to creative telescoping. Math. Comput. Sci. 2010, 4, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Boukraa, S.; Maillard, J.-M. Symmetries of lattice models in statistical mechanics and effective algebraic geometry. J. Phys. I 1993, 3, 239–258. [Google Scholar]
- Bellon, M.P.; Maillard, J.-M.; Viallet, C.-M. Quasi integrability of the sixteen-vertex model. Phys. Lett. 1992, 281, 315–319. [Google Scholar] [CrossRef]
- Boukraa, S.; Maillard, J.-M.; Rollet, G. Determinantal identities on integrable mappings. Int. J. Mod. Phys. 1994, 8, 2157–2201. [Google Scholar] [CrossRef]
- Bronstein, M.; Mudders, T.; Weil, J.-A. On Symmetric Powers of Differential Operators. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, Maui, HI, USA, 21–23 July 1997. [Google Scholar]
- Long, L. On Shioda-Inose structures of one-parameter families of K3 surfaces. J. Number Theory 2004, 109, 299–318. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Hilbert Modular Surfaces for square discriminants and elliptic subfields of genus 2 function fields. Res. Math. Sci. 2015, 2, 1–46. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A. Elliptic Fibrations on a Generic Jacobian Kummer Surface. arXiv 2014, arXiv:1105.1715v3. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Mukamel, R. Algebraic Models and Arithmetic Geometry of Teichmüller Curves in Genus Two. Available online: https://arxiv.org/pdf/1406.7057.pdf (accessed on 10 June 2022).
- Elkies, N.; Kumar, A. K3 surfaces and equations for Hilbert modular surfaces. Algebra Number Theory 2014, 8, 2297–2411. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, R.M. Curves of genus 2 with split Jacobian. Trans. Am. Math. Soc. 1988, 307, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Shaska, T. Genus 2 curves with (3,3)-split Jacobian and large automorphism group. arXiv 2002, arXiv:0201008v1. [Google Scholar]
- Shaska, T. Genus 2 fields with degree 3 elliptic subfields. Forum Math. 2004, 16, 263–280. [Google Scholar] [CrossRef] [Green Version]
- Shaska, T.; Völklein, H. Elliptic subfields and automorphisms of genus 2 function fields. arXiv 2001, arXiv:0107142v1. [Google Scholar]
- Bedford, E.; Kim, K.; Truong, T.T.; Abarenkova, N.; Maillard, J.-M. Degree Complexity of a Family of Birational Maps. In Mathematical Physics, Analysis and Geometry; Springer: New York, NY, USA, 2007. [Google Scholar]
- Anglès d’Auriac, J.-C.; Maillard, J.-M.; Viallet, C.M. On the complexity of some birational transformations. J. Phys. Math. Gen. 2006, 39, 3641–3654. [Google Scholar] [CrossRef] [Green Version]
- Maillard, J.-M. Automorphisms of algebraic varieties and Yang-Baxter equations. J. Math. Phys. 1986, 27, 2776. [Google Scholar] [CrossRef]
- Bellon, M.P.; Maillard, J.-M.; Viallet, C.-M. Infinite discrete symmetry group for the Yang-Baxter equations: Spin models. Phys. Lett. 1991, 157, 343–353. [Google Scholar] [CrossRef]
- Bellon, M.P.; Maillard, J.-M.; Viallet, C.-M. Infinite discrete symmetry group for the Yang-Baxter equations: Vertex models. Phys. Lett. B 1991, 260, 87–100. [Google Scholar] [CrossRef]
- Corti, A. Polynomial bounds for the number of automorphisms of a surface of general type. Ann. Sci. Ecole Norm. Sup. 1991, 24, 113–137. [Google Scholar] [CrossRef] [Green Version]
- Szabó, E. Bounding automorphism groups. Math. Ann. 1996, 304, 801–811. [Google Scholar] [CrossRef]
- Hacon, C.D.; McKernan, J.; Xu, C. On the birational automorphisms of varieties of general type. Ann. Math. 2013, 177, 1077–1111. [Google Scholar] [CrossRef] [Green Version]
- Abdelaziz, Y.; Maillard, J.-M. Modular forms, Schwarzian conditions, and symmetries of differential equations in physics. J. Phys. A Math. Theor. 2017, 50, 215203. [Google Scholar] [CrossRef] [Green Version]
- Almkvist, G.; van Enckevort, C.; van Straten, D.; Zudilin, W. Tables of Calabi-Yau equations. arXiv 2010, arXiv:0507430v2. [Google Scholar]
- Bostan, A.; Boukraa, S.; Hassani, S.; van Hoeij, M.; Maillard, J.-M.; Weil, J.-A.; Zenine, N.J. The Ising model: From elliptic curves to modular forms and Calabi-Yau equations. J. Phys. A Math. Theor. 2011, 44, 045204. [Google Scholar] [CrossRef] [Green Version]
- Singer, M.F. Solving homogeneous linear differential equations in terms of second order linear differential equations. Am. J. Math. 1985, 107, 663–696. [Google Scholar] [CrossRef]
- Person, A.C. Solving Homogeneous Linear Differential Equations of Order 4 in Terms of Equations of Smaller Order. Ph.D. Thesis, Raleigh, North Carolina, 2002. Available online: http://www.lib.ncsu.edu/resolver/1840.16/3059 (accessed on 10 June 2022).
- Van Hoeij, M. Solving third order linear differential equations in terms of second order equations. In Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, ACM, Waterloo, ON, Canada, 28 July–1 August 2007. [Google Scholar]
- Fricke, R.; Klein, F. Vorlesungen über die Theorie der automorphen Funktionen. I; Druck und Verlag von B. G. Teubner: Leipzig, Germany, 1897; p. 366. [Google Scholar]
- Boalch, P.; Paluba, R. Symmetric cubic surfaces and G2 character varieties. arXiv 2013, arXiv:1305.6594v2. [Google Scholar]
- Cantat, S.; Loray, F. Holomorphic Dynamics, Painlevé VI Equation and Character Varieties. Available online: https://hal.archives-ouvertes.fr/hal-00186558v2 (accessed on 22 May 2022).
- Mazzocco, M.; Vidunas, R. Cubic and Quartic Transformations of the Sixth Painlevé Equation in Terms of Riemann-Hilbert Correspondence. Stud. Appl. Math. 2013, 130, 17–48. [Google Scholar] [CrossRef] [Green Version]
- Picard, E. Sur les intégrales doubles de fonctions rationnelles dont les résidus sont nuls. Bulletin des Sciences Mathématiques Série 1902, 2, 26. [Google Scholar]
- Griffiths, P.A. On the periods of certain rational integrals I, II. Ann. Math. 1969, 90, 460–541. [Google Scholar] [CrossRef]
- Silverman, J.H.; Tate, J. Rational Points on elliptic Curves. In Undergraduate Texts in Mathematics; Springer: New York, NY, USA, 1992. [Google Scholar]
- Sadek, M. Minimal genus one curves. Funct. Approx. 2012, 46, 117–131. [Google Scholar] [CrossRef]
- Poonen, B. An explicit algebraic family of genus-one curves violating the Hasse principle. arXiv 2001, arXiv:9910124v1. [Google Scholar] [CrossRef]
- Elkies, N. Three lectures on elliptic surfaces and curves of high rank. arXiv 2007, arXiv:0709.2908v1. [Google Scholar]
- Khovanskii, A.G. Newton polyhedra and the genus of complete intersections. Funct. Anal. i Ego Pril. English Transl. Funct. Anal. Appl. 1978, 12, 38–46. [Google Scholar] [CrossRef]
- Available online: https://mathoverflow.net/questions/16615/calculating-the-genus-of-a-curve-using-the-newton-polygon (accessed on 10 June 2022).
- Rabinowitz, S. A census of convex lattice polygons with at most one interior lattice point. Ars Comb. 1989, 28, 83–96. [Google Scholar]
- Schicho, J. Simplification of surface parametrizations–a lattice polygon approach. J. Symb. Comput. 2003, 36, 535–554. [Google Scholar] [CrossRef] [Green Version]
- Algreen, S. The Point of a Certain Fivefold over Finite Fields and the Twelfth Power of the eta Function. Finite Fields Their Appl. 2002, 8, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Boukraa, S.; Hassani, S.; Maillard, J.-M. Noetherian mappings. Physica 2003, 185, 3–44. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelaziz, Y.; Boukraa, S.; Koutschan, C.; Maillard, J.-M. Diagonals of Rational Functions: From Differential Algebra to Effective Algebraic Geometry. Symmetry 2022, 14, 1297. https://doi.org/10.3390/sym14071297
Abdelaziz Y, Boukraa S, Koutschan C, Maillard J-M. Diagonals of Rational Functions: From Differential Algebra to Effective Algebraic Geometry. Symmetry. 2022; 14(7):1297. https://doi.org/10.3390/sym14071297
Chicago/Turabian StyleAbdelaziz, Youssef, Salah Boukraa, Christoph Koutschan, and Jean-Marie Maillard. 2022. "Diagonals of Rational Functions: From Differential Algebra to Effective Algebraic Geometry" Symmetry 14, no. 7: 1297. https://doi.org/10.3390/sym14071297
APA StyleAbdelaziz, Y., Boukraa, S., Koutschan, C., & Maillard, J. -M. (2022). Diagonals of Rational Functions: From Differential Algebra to Effective Algebraic Geometry. Symmetry, 14(7), 1297. https://doi.org/10.3390/sym14071297