Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode
Abstract
:1. Introduction
2. Model Formulation
- Some individuals fail with an unknown cause, and the latent failure time has a Burr XII distribution with shape parameters and ;
- A binomial random variable is taken for variables and that fail under the first and second causes of failure, respectively, with sample size and a probability of success and respectively;
- The Bernoulli distribution is taken for with masking probability, . Therefore, the Bernoulli random variable with a value of 1 means that the cause of failure is unknown, and 0 denotes the known cause of failure.
3. Estimations under Maximum Likelihood
3.1. Estimation with Known
- 1.
- There is no information regarding the parameter if 1, 2 which means that there are no failures due to cause j.
- 2.
- The results of the partially observed causes of failure of the competing risks model reduce to the usual competing risks model if .
3.2. Estimation with Unknown
3.3. Interval Estimation
4. Bayes Estimation
4.1. Posterior Distribution under Importance Sample Technique
4.2. Point Estimation
- Let as the initial values of an iteration with .
- Generate and from the gamma densities given in (31).
- Under the normal distribution as a proposal, the Metropolis–Hasting (MH) algorithm generates .
- For given , and , compute and update I by .
- The steps from (2) to (4) are repeated times.
- Suppose that is a burn-in required to satisfy the stationary distribution.
- Compute the uniform values , , M.
4.3. Interval Estimation
- 1.
- For the parameter , use () of the MCMC sample to find the -th quantile of by as
- 2.
- The generated values M are ordered to obtain ,
- 3.
- Without loss of generality for we define the value by
- 4.
- For the ordered pairs (, ), the -th quantile of of the marginal posterior is
- 5.
- The credible intervals of are given byThe credible interval for and can be obtained similarly.
5. Simulation Studies
6. Disease Data Analysis
6.1. Example 1: A Disease Data Set
6.2. Example 2: Simulated Data
- We fixed , and the hyper parameters were selected to satisfy E() .
- For the given 50, 25 and , we generated a type I HSC random sample from a Burr XII distribution with parameters and {0.0008, 0.0012, 0.0016, 0.0024, 0.0025, 0.0038, 0.0057, 0.0069, 0.0103, 0.0105, 0.012, 0.0134, 0.0172, 0.0237, 0.0312, 0.0336, 0.0507, 0.0589, 0.1098, 0.1295, 0.1577, 0.1675, 0.1732, 0.1959, 0.2141}.
- From this data, we noticed that .
- The number of censored failure causes were generated from the Bernouli distribution with a probability and a sample size of 25.
- The two observed causes and were generated from the binomail distribution with parameter ( and the probability of success and respectively.
- The fixed point method was used to compute the MLE with an initial value of 0.52 taken from the profile log-likelihood function (17) depicted in Figure 5.
- Point estimates, 95% ML intervals and a Bayes estimate are given in Table 7.
- Under the estimated values of the parameters in Table 7, the survival probability when for MLE is given by = 0.822363, =0.84961 and, for a Bayes estimate, = 0.836762, = 0.836863.
7. Conclusions
- The proposed model under the type I HSC is capable of measuring competing disease risks;
- Small values of masking probability are preferred over large values;
- The affected sample size m and ideal test time are more crucial than the sample size n;
- Estimation based on Bayes method leads to better results than the MLE;
- The results of the MSEs and interval length decrease for larger m and .
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, N.; Aggarwala, R. Progressive Censoring: Theory, Methods, and Applications; Birkhauser: Boston, MA, USA, 2000. [Google Scholar]
- Balakrishnan, N. Progressive censoring methodology: An appraisal. Test 2007, 16, 211–296. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Cramer, E. The Art of Progressive Censoring; Birkauser: New York, NY, USA, 2014. [Google Scholar]
- Gupta, R.D.; Kundu, D. Hybrid censoring schemes with exponential failure distribution. Commun. Stat. Theory Methods 1998, 27, 3065–3083. [Google Scholar] [CrossRef]
- Kundu, D.; Pradhan, B. Estimating the parameters of the generalized exponential distribution in presence of hybrid censoring. Commun. Stat. Theory Methods 2009, 38, 2030–2041. [Google Scholar] [CrossRef] [Green Version]
- Algarni, A.; Almarashi, A.M.; Abd-Elmougod, G.A. Joint type-I generalized hybrid censoring for estimation the two Weibull distributions. J. Inf. Sci. Eng. 2020, 36, 1243–1260. [Google Scholar]
- Childs, A.; Chrasekar, B.; Balakrishnan, N.; Kundu, D. Exact likelihood inference based on Type-I and Type-II hybrid censored samples from the exponential distribution. Ann. Inst. Stat. Math. 2003, 55, 319–330. [Google Scholar] [CrossRef]
- Shih, J.H.; Emura, T. Likelihood-based inference for bivariate latent failure time models with competing risks under the generalized FGM copula. Comput. Stat. 2018, 33, 1293–1323. [Google Scholar] [CrossRef]
- Emura, T.; Shih, J.H.; Ha, I.D.; Wilke, R.A. Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula. Stat. Methods Med. Res. 2020, 29, 2307–2327. [Google Scholar] [CrossRef]
- Wang, Y.C.; Emura, T.; Fan, T.H.; Lo, S.M.; Wilke, R.A. Likelihood-based inference for a frailty-copula model based on competing risks failure time data. Qual. Reliab. Eng. Int. 2020, 36, 1622–1638. [Google Scholar] [CrossRef]
- Shih, J.H.; Lee, W.; Sun, L.H.; Emura, T. Fitting competing risks data to bivariate Pareto models. Commun. Stat. Theory Methods 2019, 48, 1193–1220. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Cai, C.; Lu, W.; Tang, Y. Semiparametric estimation for proportional hazards mixture cure model allowing non-curable competing risk. J. Stat. Plan. Inference 2021, 211, 171–189. [Google Scholar] [CrossRef]
- Luo, C.; Shen, L.; Xu, A. Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints. Reliab. Eng. Syst. Saf. 2022, 218, 108136. [Google Scholar] [CrossRef]
- Xu, A.; Zhou, S.; Tang, Y. A unified model for system reliability evaluation under dynamic operating conditions. IEEE Trans. Reliab. 2021, 70, 65–72. [Google Scholar] [CrossRef]
- Cox, D.R. The analysis of exponentially distributed lifetimes with two types of failure. J. R. Soc. 1959, 21, 411–421. [Google Scholar]
- Kayal, T.; Tripathi, Y.M.; Rastogi, M.K.; Asgharzadeh, A. Inference for Burr XII distribution under Type I progressive hybrid censoring. Commun. Stat. Simul. Comput. 2017, 46, 7447–7465. [Google Scholar] [CrossRef]
- Balakrishnan, N.; Han, D. Exact inference for a simple step-stress model with competing risks for failure from exponential distribution under Type-II censoring. J. Stat. Plan. Inference 2008, 138, 4172–4186. [Google Scholar] [CrossRef]
- Alghamdi, A.; Abd-Elmougod, G.A.; Kundu, D.; Marin, M. Statistical Inference of Jointly Type-II Lifetime Samples under Weibull Competing Risks Models. Symmetry 2022, 14, 701. [Google Scholar] [CrossRef]
- Cramer, E.; Schmiedt, A.B. Progressively Type-II censored competing risks data from Lomax distributions. Comput. Stat. Data Anal. 2011, 55, 1285–1303. [Google Scholar] [CrossRef]
- Kundu, D.; Pradhan, B. BayesIan analysis of progressively censored competing risks data. Sankhya 2011, 73, 276–296. [Google Scholar] [CrossRef]
- Han, D.; Kundu, D. Inference for a step-stress model with competing risks for failure from the generalized exponential distribution under type-I censoring. IEEE Trans. Reliab. 2015, 64, 31–43. [Google Scholar] [CrossRef]
- Koley, A.; Kundu, D. On generalized progressive hybrid censoring in presence of competing risks. Metrika 2017, 80, 401–426. [Google Scholar] [CrossRef] [Green Version]
- Abu-Zinadah, H.H.; Sayed-Ahmed, N. Competing risks model with partially step-stress accelerate life tests in analyses lifetime Chen data under type-II censoring scheme. Open Phys. 2019, 17, 192–199. [Google Scholar] [CrossRef]
- Almarashi, A.M.; Algarni, A.; Abd-Elmougod, G.A. Statistical analysis of competing risks lifetime data from Nadarajaha and Haghighi distribution under type-II censoring. J. Intell. Fuzzy Syst. 2019, 38, 2591–2601. [Google Scholar] [CrossRef]
- Hobiny, A.; Alzahrani, F.; Abbas, I.; Marin, M. The effect of fractional time derivative of bioheat model in skin tissue induced to laser irradiation. Symmetry 2020, 12, 602. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Marin, M.; Zeeshan, A.; Abdelsalam, S.I. Recent trends in computational fluid dynamics. Front. Phys. 2020, 8, 593111. [Google Scholar] [CrossRef]
- Almalki, S.J.; Abushal, T.A.; Alsulami, M.D.; Abd-Elmougod, G.A. Analysis of Type-II Censored Competing Risks’ Data under Reduced New Modified Weibull Distribution. Complexity 2021, 2021, 9932840. [Google Scholar] [CrossRef]
- Abduallah, M.; Almarashi, A.M.; Algarni, A.; Daghistani, A.M.; Abd-Elmougod, G.A.; Abdel-Khalek, S.; Raqab, M.Z. Inferences for Joint Hybrid Progressive Censored Exponential Lifetimes under Competing Risk Model. Math. Probl. Eng. 2021, 2021, 3380467. [Google Scholar]
- Alghamdi, A.S. Partially Accelerated Model for Analyzing Competing Risks Data from Gompertz Population under Type-I Generalized Hybrid Censoring Scheme. Complexity 2021, 2021, 9925094. [Google Scholar] [CrossRef]
- Burr, I.W. Cumulative frequency functions. Ann. Math. Stat. 1942, 13, 215–232. [Google Scholar] [CrossRef]
- Escarela, G.; Carriere, J.F. Fitting competing risks with an assumed copula. Stat. Methods Med. Res. 2003, 12, 333–349. [Google Scholar] [CrossRef]
- McCool, J.I. Using the Weibull Distribution: Reliability, Modeling, and Inference; Wiley: Hoboken, NJ, USA, 2012; pp. 236–238. [Google Scholar]
- Aljohani, H.M.; Alfar, N.M. Estimations with step-stress partially accelerated life tests for competing risks Burr XII lifetime model under type-II censored data. Alex. Eng. J. 2020, 59, 1171–1180. [Google Scholar] [CrossRef]
- Abushal, T.A.; Soliman, A.A.; Abd-Elmougod, G.A. Statistical inferences of Burr XII lifetime models under joint Type-1 competing risks samples. J. Math. 2021, 2021, 9553617. [Google Scholar] [CrossRef]
- Wang, L.; Tripathi, Y.M.; Lodhi, C. Inference for Weibull competing risks model with partially observed failure causes under generalized progressive hybrid censoring. J. Comput. Appl. Math. 2020, 368, 112537. [Google Scholar] [CrossRef]
- Xu, J.; Long, J.S. Using the delta method tonconstruct confidence intervals for predicted probabilities, rates, and discrete changes. In Lecture Notes; Indiana University: Bloomington, IN, USA, 2005. [Google Scholar]
- Abd-Elmougod, G.A.; El-Sayed, M.A.; Abdel-Rahman, E.O. Coefficient of variation of Topp-Leone distribution under adaptive Type-II progressive censoring scheme: Bayesian and non-Bayesian approach. J. Comput. Theor. 2015, 12, 4028–4035. [Google Scholar] [CrossRef]
- Chen, M.-H.; Shao, Q.-M. Monte Carlo estimation of Bayesian Credible and HPD intervals. J. Comput. Graph. Stat. 1999, 8, 69–92. [Google Scholar]
- Hoel, D.G. A representation of mortality data by competing risks. Biometrics 1972, 28, 475–488. [Google Scholar] [CrossRef]
- Pareek, B.; Kundu, D.; Kumar, S. On progressively censored competing risks data for Weibull distributions. Comput. Stat. Data Anal. 2009, 53, 4083–4094. [Google Scholar] [CrossRef]
- Sarhan, A.M.; Hamilton, D.C.; Smith, B. Statistical analysis of competing risks models. Reliab. Syst. Saf. 2010, 95, 953–962. [Google Scholar] [CrossRef]
- Tahani, A.A.; Soliman, A.A.; Abd-Elmougod, G.A. Inference of partially observed causes for failure of Lomax competing risks model under type-II generalized hybrid censoring scheme. Alex. Eng. J. 2022, 67, 5427–5439. [Google Scholar] [CrossRef]
p | MLE | Bayes | |||||
---|---|---|---|---|---|---|---|
0.1 | (0.5, 40, 15) | 1.415 | 2.011 | 2.485 | 0.961 | 1.817 | 2.321 |
(0.305) | (0.397) | (0.522) | (0.207) | (0.308) | (0.371) | ||
(0.5, 40, 30) | 1.399 | 1.907 | 2.416 | 1.227 | 1.789 | 2.337 | |
(0.253) | (0.348) | (0.448) | (0.161) | (0.267) | (0.316) | ||
(0.5, 50, 30) | 1.392 | 1.927 | 2.443 | 1.222 | 1.804 | 2.337 | |
(0.259) | (0.351) | (0.443) | (0.161) | (0.260) | (0.312) | ||
(1.0, 40, 15) | 1.351 | 1.890 | 2.401 | 1.221 | 1.788 | 2.321 | |
(0.249) | (0.338) | (0.447) | (0.152) | (0.259) | (0.288) | ||
(1.0, 40, 30) | 1.302 | 1.825 | 2.384 | 1.225 | 1.801 | 2.314 | |
(0.201) | (0.285) | (0.375) | (0.101) | (0.211) | (0.227) | ||
(1.0, 50, 30) | 1.313 | 1.829 | 2.380 | 1.221 | 1.798 | 2.311 | |
(0.294) | (0.268) | (0.361) | (0.098) | (0.192) | (0.204) | ||
0.2 | (0.5, 40, 15) | 1.454 | 2.046 | 2.514 | 0.998 | 1.852 | 2.024 |
(0.325) | (0.415) | (0.541) | (0.221) | (0.325) | (0.387) | ||
(0.5, 40, 30) | 1.401 | 1.922 | 2.430 | 1.241 | 1.803 | 2.356 | |
(0.271) | (0.362) | (0.465) | (0.175) | (0.281) | (0.331) | ||
(0.5, 50, 30) | 1.414 | 1.932 | 2.441 | 1.235 | 1.811 | 2.350 | |
(0.276) | (0.365) | (0.461) | (0.179) | (0.275) | (0.325) | ||
(1.0, 40, 15) | 1.365 | 1.901 | 2.407 | 1.232 | 1.805 | 2.339 | |
(0.249) | (0.338) | (0.447) | (0.152) | (0.259) | (0.288) | ||
(1.0, 40, 30) | 1.302 | 1.825 | 2.384 | 1.225 | 1.801 | 2.314 | |
(0.201) | (0.285) | (0.375) | (0.101) | (0.211) | (0.227) | ||
(1.0, 50, 30) | 1.313 | 1.829 | 2.380 | 1.221 | 1.798 | 2.311 | |
(0.207) | (0.281) | (0.379) | (0.107) | (0.208) | (0.221) | ||
0.3 | (0.5, 40, 15) | 1.485 | 2.122 | 2.565 | 1.050 | 1.899 | 2.074 |
(0.350) | (0.442) | (0.566) | (0.247) | (0.339) | (0.399) | ||
(0.5, 40, 30) | 1.430 | 1.955 | 2.474 | 1.267 | 1.838 | 2.381 | |
(0.292) | (0.383) | (0.481) | (0.191) | (0.298) | (0.348) | ||
(0.5, 50, 30) | 1.445 | 1.959 | 2.469 | 1.267 | 1.840 | 2.378 | |
(0.291) | (0.384) | (0.479) | (0.194) | (0.278) | (0.339) | ||
(1.0, 40, 15) | 1.388 | 1.927 | 2.441 | 1.259 | 1.832 | 2.357 | |
(0.264) | (0.354) | (0.462) | (0.170) | (0.268) | (0.294) | ||
(1.0, 40, 30) | 1.327 | 1.851 | 2.399 | 1.252 | 1.828 | 2.341 | |
(0.219) | (0.298) | (0.391) | (0.119) | (0.224) | (0.245) | ||
(1.0, 50, 30) | 1.340 | 1.855 | 2.399 | 1.248 | 1.641 | 2.347 | |
(0.218) | (0.297) | (0.395) | (0.124) | (0.229) | (0.241) |
p | MLE | Bayes | |||||
---|---|---|---|---|---|---|---|
0.1 | (0.5, 40, 15) | 3.124 | 3.425 | 4.852 | 2.842 | 3.015 | 4.052 |
(0.89) | (0.87) | (0.89) | (0.90) | (0.91) | (0.89) | ||
(0.5, 40, 30) | 3.015 | 3.285 | 4.599 | 2.687 | 2.841 | 3.911 | |
(0.90) | (0.91) | (0.89) | (0.93) | (0.91) | (0.90) | ||
(0.5, 50, 30) | 3.029 | 3.260 | 4.590 | 2.692 | 2.838 | 3.921 | |
(0.91) | (0.89) | (0.90) | (0.93) | (0.93) | (0.94) | ||
(1.0, 40, 15) | 3.075 | 3.381 | 4.801 | 2.790 | 2.984 | 4.003 | |
(0.90) | (0.89) | (0.89) | (0.90) | (0.91) | (0.92) | ||
(1.0, 40, 30) | 2.958 | 3.241 | 4.557 | 2.655 | 2.802 | 3.871 | |
(0.90) | (0.92) | (0.90) | (0.93) | (0.94) | (0.93) | ||
(1.0, 50, 30) | 2.982 | 3.214 | 4.547 | 2.645 | 2.801 | 3.887 | |
(0.92) | (0.90) | (0.90) | (0.93) | (0.93) | (0.92) | ||
0.2 | (0.5, 40, 15) | 3.191 | 3.484 | 4.915 | 2.898 | 3.081 | 4.112 |
(0.90) | (0.87) | (0.88) | (0.90) | (0.89) | (0.90) | ||
(0.5, 40, 30) | 3.074 | 3.325 | 4.666 | 2.746 | 2.899 | 3.972 | |
(0.90) | (0.90) | (0.89) | (0.90) | (0.91) | (0.93) | ||
(0.5, 50, 30) | 3.092 | 3.310 | 4.651 | 2.754 | 2.898 | 3.979 | |
(0.90) | (0.90) | (0.91) | (0.93) | (0.92) | (0.91) | ||
(1.0, 40, 15) | 3.130 | 3.439 | 4.864 | 2.845 | 3.038 | 4.069 | |
(0.92) | (0.90) | (0.89) | (0.90) | (0.94) | (0.92) | ||
(1.0, 40, 30) | 3.025 | 3.298 | 4.680 | 2.715 | 2.864 | 3.918 | |
(0.91) | (0.92) | (0.96) | (0.93) | (0.91) | (0.92) | ||
(1.0, 50, 30) | 3.041 | 3.269 | 4.592 | 2.698 | 2.858 | 3.941 | |
(0.91) | (0.92) | (0.90) | (0.93) | (0.92) | (0.91) | ||
0.3 | (0.5, 40, 15) | 3.280 | 3.581 | 4.999 | 2.960 | 3.174 | 4.202 |
(0.86) | (0.89) | (0.88) | (0.90) | (0.89) | (0.91) | ||
(0.5, 40, 30) | 3.159 | 3.414 | 4.741 | 2.829 | 2.975 | 4.050 | |
(0.89) | (0.89) | (0.90) | (0.90) | (0.91) | (0.89) | ||
(0.5, 50, 30) | 3.178 | 3.400 | 4.732 | 2.835 | 2.975 | 4.030 | |
(0.90) | (0.92) | (0.91) | (0.93) | (0.92) | (0.94) | ||
(1.0, 40, 15) | 3.215 | 3.521 | 4.945 | 2.935 | 3.120 | 4.148 | |
(0.90) | (0.92) | (0.91) | (0.94) | (0.92) | (0.92) | ||
(1.0, 40, 30) | 3.111 | 3.379 | 4.760 | 2.810 | 2.941 | 4.045 | |
(0.93) | (0.91) | (0.96) | (0.93) | (0.92) | (0.92) | ||
(1.0, 50, 30) | 3.123 | 3.345 | 4.680 | 2.781 | 2.935 | 4.022 | |
(0.92) | (0.92) | (0.91) | (0.93) | (0.95) | (0.91) |
p | MLE | Bayes | |||||
---|---|---|---|---|---|---|---|
0.1 | (0.5, 40, 15) | 1.118 | 0.819 | 1.417 | 1.049 | 0.748 | 1.235 |
(0.191) | (0.124) | (0.269) | (0.124) | (0.057) | (0.252) | ||
(0.5, 40, 30) | 1.084 | 0.772 | 1.375 | 1.003 | 0.715 | 1.202 | |
(0.174) | (0.103) | (0.230) | (0.100) | (0.031) | (0.235) | ||
(0.5, 50, 30) | 1.089 | 0.791 | 1.380 | 1.000 | 0.708 | 1.202 | |
(0.171) | (0.100) | (0.236) | (0.091) | (0.019) | (0.240) | ||
(1.5, 40, 15) | 1.074 | 0.778 | 1.371 | 1.002 | 0.705 | 1.200 | |
(0.172) | (0.101) | (0.235) | (0.102) | (0.042) | (0.233) | ||
(1.5, 40, 30) | 1.041 | 0.733 | 1.338 | 0.974 | 0.677 | 1.171 | |
(0.150) | (0.081) | (0.209) | (0.076) | (0.004) | (0.217) | ||
(1.5, 50, 30) | 1.045 | 0.742 | 1.336 | 0.961 | 0.662 | 1.155 | |
(0.151) | (0.082) | (0.214) | (0.082) | (0.003) | (0.221) | ||
0.2 | (0.5, 40, 15) | 1.147 | 0.845 | 1.444 | 1.074 | 0.778 | 1.268 |
(0.214) | (0.142) | (0.278) | (0.142) | (0.074) | (0.280) | ||
(0.5, 40, 30) | 1.111 | 0.803 | 1.407 | 1.029 | 0.741 | 1.232 | |
(0.191) | (0.122) | (0.252) | (0.115) | (0.049) | (0.254) | ||
(0.5, 50, 30) | 1.118 | 0.812 | 1.402 | 1.022 | 0.735 | 1.229 | |
(0.188) | (0.120) | (0.255) | (0.111) | (0.040) | (0.257) | ||
(1.5, 40, 15) | 1.104 | 0.803 | 1.400 | 1.028 | 0.731 | 1.224 | |
(0.191) | (0.118) | (0.254) | (0.119) | (0.057) | (0.252) | ||
(1.5, 40, 30) | 1.067 | 0.761 | 1.362 | 1.000 | 0.707 | 1.201 | |
(0.168) | (0.100) | (0.228) | (0.092) | (0.019) | (0.234) | ||
(1.5, 50, 30) | 1.071 | 0.771 | 1.362 | 0.987 | 0.687 | 1.184 | |
(0.168) | (0.100) | (0.233) | (0.100) | (0.018) | (0.241) | ||
0.3 | (0.5, 40, 15) | 1.191 | 0.887 | 1.481 | 1.112 | 0.821 | 1.312 |
(0.230) | (0.157) | (0.282) | (0.159) | (0.091) | (0.299) | ||
(0.5, 40, 30) | 1.152 | 0.851 | 1.459 | 1.071 | 0.779 | 1.271 | |
(0.208) | (0.144) | (0.271) | (0.133) | (0.068) | (0.271) | ||
(0.5, 50, 30) | 1.160 | 0.853 | 1.445 | 1.059 | 0.771 | 1.270 | |
(0.205) | (0.139) | (0.276) | (0.129) | (0.058) | (0.274) | ||
(1.5, 40, 15) | 1.145 | 0.841 | 1.439 | 1.066 | 0.769 | 1.271 | |
(0.209) | (0.141) | (0.271) | (0.141) | (0.075) | (0.271) | ||
(1.5, 40, 30) | 1.309 | 0.799 | 1.398 | 1.032 | 0.745 | 1.238 | |
(0.187) | (0.122) | (0.247) | (0.110) | (0.041) | (0.255) | ||
(1.5, 50, 30) | 1.122 | 0.812 | 1.397 | 1.020 | 0.721 | 1.217 | |
(0.190) | (0.124) | (0.251) | (0.119) | (0.037) | (0.260) |
p | MLE | Bayes | |||||
---|---|---|---|---|---|---|---|
0.1 | (0.5, 40, 15) | 2.235 | 1.754 | 2.578 | 2.100 | 1.584 | 2.411 |
(0.88) | (0.88) | (0.89) | (0.93) | (0.91) | (0.89) | ||
(0.5, 40, 30) | 2.185 | 1.709 | 2.541 | 2.065 | 1.546 | 2.382 | |
(0.89) | (0.91) | (0.90) | (0.93) | (0.91) | (0.96) | ||
(0.5, 50, 30) | 2.192 | 1.701 | 2.541 | 2.071 | 1.541 | 2.375 | |
(0.90) | (0.90) | (0.93) | (0.93) | (0.95) | (0.94) | ||
(1.5, 40, 15) | 2.141 | 1.667 | 2.501 | 2.019 | 1.503 | 2.336 | |
(0.92) | (0.89) | (0.89) | (0.94) | (0.91) | (0.93) | ||
(1.5, 40, 30) | 2.102 | 1.631 | 2.465 | 1.852 | 1.462 | 2.300 | |
(0.92) | (0.92) | (0.92) | (0.93) | (0.90) | (0.93) | ||
(1.5, 50, 30) | 2.113 | 1.625 | 2.454 | 1.847 | 1.452 | 2.294 | |
(0.90) | (0.90) | (0.90) | (0.94) | (0.93) | (0.95) | ||
0.2 | (0.5, 40, 15) | 2.275 | 1.791 | 2.610 | 2.138 | 1.614 | 2.447 |
(0.89) | (0.88) | (0.87) | (0.93) | (0.91) | (0.89) | ||
(0.5, 40, 30) | 2.322 | 1.745 | 2.579 | 2.099 | 1.581 | 2.412 | |
(0.89) | (0.92) | (0.90) | (0.92) | (0.91) | (0.94) | ||
(0.5, 50, 30) | 2.234 | 1.734 | 2.577 | 2.099 | 1.572 | 2.415 | |
(0.91) | (0.90) | (0.90) | (0.92) | (0.95) | (0.91) | ||
(1.5, 40, 15) | 2.177 | 1.698 | 2.534 | 2.051 | 1.532 | 2.367 | |
(0.90) | (0.89) | (0.89) | (0.94) | (0.91) | (0.91) | ||
(1.5, 40, 30) | 2.137 | 1.662 | 2.499 | 1.887 | 1.491 | 2.336 | |
(0.91) | (0.92) | (0.92) | (0.93) | (0.90) | (0.92) | ||
(1.5, 50, 30) | 2.147 | 1.661 | 2.487 | 1.879 | 1.482 | 2.315 | |
(0.92) | (0.92) | (0.91) | (0.95) | (0.94) | (0.95) | ||
0.3 | (0.5, 40, 15) | 2.299 | 1.815 | 2.639 | 2.161 | 1.642 | 2.470 |
(0.89) | (0.85) | (0.89) | (0.90) | (0.91) | (0.89) | ||
(0.5, 40, 30) | 2.357 | 1.784 | 2.614 | 2.132 | 1.615 | 2.441 | |
(0.90) | (0.90) | (0.90) | (0.90) | (0.91) | (0.92) | ||
(0.5, 50, 30) | 2.261 | 1.760 | 2.597 | 2.127 | 1.597 | 2.444 | |
(0.91) | (0.92) | (0.90) | (0.92) | (0.90) | (0.91) | ||
(1.5, 40, 15) | 2.210 | 1.729 | 2.564 | 2.082 | 1.564 | 2.381 | |
(0.91) | (0.89) | (0.90) | (0.92) | (0.91) | (0.92) | ||
(1.5, 40, 30) | 2.158 | 1.689 | 2.532 | 1.915 | 1.524 | 2.359 | |
(0.92) | (0.92) | (0.91) | (0.93) | (0.93) | (0.95) | ||
(1.5, 50, 30) | 2.171 | 1.692 | 2.500 | 1.896 | 1.509 | 2.337 | |
(0.91) | (0.92) | (0.94) | (0.92) | (0.94) | (0.93) |
cause1 | 159 | 189 | 191 | 198 | 200 | 207 | 220 | 235 | 245 | 250 | 256 |
261 | 265 | 266 | 280 | 317 | 318 | 343 | 356 | 383 | 399 | 403 | |
414 | 428 | 432 | 495 | 525 | 536 | 549 | 552 | 554 | 558 | 571 | |
596 | 605 | 612 | 621 | 628 | 631 | 636 | 643 | 647 | 648 | 649 | |
586 | 594 | 596 | 661 | 663 | 666 | 670 | 695 | 697 | 700 | 705 | |
712 | 713 | 738 | 748 | 753 | |||||||
cause2 | 40 | 42 | 51 | 62 | 163 | 179 | 206 | 222 | 228 | 249 | 252 |
282 | 324 | 333 | 341 | 366 | 385 | 407 | 420 | 431 | 441 | 461 | |
462 | 482 | 517 | 517 | 524 | 564 | 567 | 586 | 619 | 620 | 621 | |
622 | 647 | 651 | 686 | 761 | 763 |
Pa. | ML | Bayes | 95% A.C.I. | Lenth | 95% C.I. | Lenth |
---|---|---|---|---|---|---|
1.5607 | 0.9695 | (0.7588, 2.3626) | 1.6038 | (1.1172, 1.7971) | 0.6799 | |
1.4957 | 1.1230 | (0.7172, 2.2742) | 1.5571 | (1.0846, 1.6138) | 0.5291 | |
1.9123 | 1.5013 | (1.4658, 2.3588) | 0.8930 | (1.3123, 1.5896) | 0.2773 |
Exact | ML | Bayes | 95% A.C.I. | Length | 95% C.I. | Length |
---|---|---|---|---|---|---|
1.0 | 1.0368 | 1.0311 | (0.3994, 1.6741) | 1.2748 | (0.8247, 1.8636) | 1.0390 |
1.3 | 0.8640 | 1.0304 | (0.2896, 1.4383) | 1.1488 | (0.7965, 2.0385) | 1.2420 |
0.5 | 0.5248 | 0.5567 | (0.3559, 0.6936) | 0.3377 | (0.2862, 0.526) | 0.2398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuhayfith, F.E.; Darwish, J.A.; Alharbi, R.; Marin, M. Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode. Symmetry 2022, 14, 1298. https://doi.org/10.3390/sym14071298
Almuhayfith FE, Darwish JA, Alharbi R, Marin M. Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode. Symmetry. 2022; 14(7):1298. https://doi.org/10.3390/sym14071298
Chicago/Turabian StyleAlmuhayfith, Fatimah E., Jumanah Ahmed Darwish, Randa Alharbi, and Marin Marin. 2022. "Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode" Symmetry 14, no. 7: 1298. https://doi.org/10.3390/sym14071298
APA StyleAlmuhayfith, F. E., Darwish, J. A., Alharbi, R., & Marin, M. (2022). Burr XII Distribution for Disease Data Analysis in the Presence of a Partially Observed Failure Mode. Symmetry, 14(7), 1298. https://doi.org/10.3390/sym14071298