Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate
Abstract
:1. Introduction
2. Main Results
- I.
- Interior points of cuboid:
- II.
- Interior of all the six faces of the cuboid:
- III.
- On the vertices of the cuboid:
- IV.
- On the edges of the cuboid:
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of the Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Boston, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 1973, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. On coefficient for certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427–1433. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Goel, P.; Kumar, S.S. Certain class of starlike functions associated with modified sigmoid function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Kanas, S.; Masih, V.S. On the behaviour of analytic representation of the generalized Pascal snail. Anal. Math. Phy. 2021, 11, 77. [Google Scholar] [CrossRef]
- Kumar, S.S.; Gangania, K. A cardioid domain and starlike functions. Anal. Math. Phy. 2021, 11, 54. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Sokół, J.; Zainab, S. Analytic functions associated with cardioid domain. Turk. J. Math. 2020, 44, 1127–1136. [Google Scholar] [CrossRef]
- Malik, S.N.; Mahmood, S.; Raza, M.; Farman, S.; Zainab, S. Coefficient Inequalities of Functions Associated with Petal Type Domains. Mathematics 2018, 6, 298. [Google Scholar] [CrossRef] [Green Version]
- Malik, S.N.; Raza, M.; Xin, Q.; Sokół, J.; Manzoor, R.; Zainab, S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry 2021, 13, 2321. [Google Scholar] [CrossRef]
- Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Starlike and convex functions associated with nephroid domain. Bull. Malays. Math. Sci. Soc. 2021, 44, 79–104. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Yalçın, S. Third Hankel determinant for Bazilevic functions. Adv. Math. Sci. J. 2016, 5, 91–96. [Google Scholar]
- Aouf, M.K. Neighborhoods of a certain family of multivalent functions defined by using a fractional derivative operator. Bull. Belg. Math. Soc. Simon Stevin 2009, 16, 31–40. [Google Scholar] [CrossRef]
- Aouf, M.K.; Dziok, J. Distortion and convolutional theorems for operators of generalized fractional calculus involving Wright function. J. Appl. Anal. 2008, 14, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Some characterizations of integral operators associated with certain classes of p-valent functions defined by the Srivastava-Saigo-Owa fractional differintegral operator. Complex Anal. Oper. Theory 2016, 10, 1267–1275. [Google Scholar] [CrossRef]
- Aouf, M.K.; Mostafa, A.O.; Zayed, H.M. Subordination and superordination properties of p-valent functions defined by a generalized fractional differintegral operator. Quaest. Math. 2016, 39, 54. [Google Scholar] [CrossRef]
- Riaz, S.; Nisar, U.A.; Xin, Q.; Malik, S.N.; Raheem, A. On Starlike Functions of Negative Order Defined by q-Fractional Derivative. Fractal Fract. 2022, 6, 30. [Google Scholar] [CrossRef]
- Zainab, S.; Raza, M.; Xin, Q.; Jabeen, M.; Malik, S.N.; Riaz, S. On q-Starlike Functions Defined by q-Ruscheweyh Differential Operator in Symmetric Conic Domain. Symmetry 2021, 13, 1947. [Google Scholar] [CrossRef]
- Piejko, K.; Sokół, J. Hadamard product of analytic functions and some special regions and curves. J. Inequal. Appl. 2013, 2013, 420. [Google Scholar] [CrossRef] [Green Version]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V. Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate. Turk. J. Math. 2018, 42, 1380–1399. [Google Scholar]
- Kargar, R.; Ebadian, A.; Trojnar-Spelina, L. Further results for starlike functions related with Booth lemniscate. Iran. Sci. Tech. Trans. Sci. 2019, 43, 1235–1238. [Google Scholar] [CrossRef] [Green Version]
- Najmadi, P.; Najafzadeh, S.; Ebadian, A. Some properties of analytic functions related with Booth lemniscate. Acta Univ. Sapientiae Math. 2018, 10, 112–124. [Google Scholar] [CrossRef] [Green Version]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 41, 111–122. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Banga, S.; Kumar, S.S. The sharp bounds of the second and third Hankel determinants for the class SL*. Math. Slovaca 2020, 70, 849–862. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Lecko, M.; Sim, Y.J. The sharp bound of the third Hankel determinant for some classes of analytic functions. Bull. Korean Math. Soc. 2018, 55, 1859–1868. [Google Scholar]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. The bound of the Hankel determinant of the third kind for starlike functions. Bull. Malays. Math. Sci. Soc. 2019, 42, 767–780. [Google Scholar] [CrossRef] [Green Version]
- Lecko, A.; Sim, Y.J.; Smiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef] [Green Version]
- Riaz, A.; Raza, M.; Thomas, D.K. Hankel determinants for starlike and convex functions associated with sigmoid functions. Forum Math. 2021, 34. [Google Scholar] [CrossRef]
- Rahman, I.A.R.; Atshan, W.G.; Oros, G.I. New Concept on Fourth Hankel Determinant of a Certain Subclass of Analytic Functions. Afr. Mat. 2022, 33, 7. [Google Scholar] [CrossRef]
- Breaz, V.D.; Cătaș, A.; Cotîrlă, L. On the Upper Bound of the Third Hankel Determinant for Certain Class of Analytic Functions Related with Exponential Function. Analele Stiintifice Univ. Ovidius Constanta 2022, 30, 75–89. [Google Scholar] [CrossRef]
- Tang, H.; Murugusundaramoorthy, G.; Li, S.H.; Ma, L.N. Fekete-Szegö and Hankel inequalities for certain class of analytic functions related to the sine function. AIMS Math. 2022, 7, 6365–6380. [Google Scholar] [CrossRef]
- Brown, J.E.; Tsao, A. On the Zalcman conjecture for starlike and typically real functions. Math. Z. 1986, 191, 467–474. [Google Scholar] [CrossRef]
- Vasudevarao, A.; Pandey, A. The Zalcman conjecture for certain analytic and univalent functions. J. Math. Anal. Appl. 2020, 492, 124466. [Google Scholar] [CrossRef]
- Khan, M.G.; Ahmad, B.; Murugusundaramoorthy, G.; Mashwani, W.K.; Yalcin, S.; Shaba, T.G.; Salleh, Z. Third Hankel determinant and Zalcman functional for a class of starlike functions with respect to symmetric points related with sine function. J. Math. Comput. Sci. 2022, 25, 29–36. [Google Scholar] [CrossRef]
- Ali, R.M. Coefficients of the inverse of strongly starlike functions. Bull. Malays. Math. Sci. Soc. 2003, 26, 63–71. [Google Scholar]
- Ravichandran, V.; Verma, S. Bound for the fifth coefficient of certain starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 505–510. [Google Scholar] [CrossRef]
- Libera, R.J.; Zlotkiewicz, E.J. Early coefficients of the inverse of a regular convex functions. Proc. Am. Math. Soc. 1982, 85, 225–230. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Owa, S. Some characterization and distortion theorems involving fractional calculus, linear operators and certain subclasses of analytic functions. Nagoya Math. J. 1987, 106, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Owa, S. Univalent Functions, Fractional Calculus, and Their Applications; Halstead Press: Sydney, Australia; Ellis Horwood Ltd.: Chichester, UK; JohnWiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1989. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.; Riaz, A.; Xin, Q.; Malik, S.N. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry 2022, 14, 1366. https://doi.org/10.3390/sym14071366
Raza M, Riaz A, Xin Q, Malik SN. Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry. 2022; 14(7):1366. https://doi.org/10.3390/sym14071366
Chicago/Turabian StyleRaza, Mohsan, Amina Riaz, Qin Xin, and Sarfraz Nawaz Malik. 2022. "Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate" Symmetry 14, no. 7: 1366. https://doi.org/10.3390/sym14071366
APA StyleRaza, M., Riaz, A., Xin, Q., & Malik, S. N. (2022). Hankel Determinants and Coefficient Estimates for Starlike Functions Related to Symmetric Booth Lemniscate. Symmetry, 14(7), 1366. https://doi.org/10.3390/sym14071366