Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions
Abstract
:1. Introduction
- 1.
- ,
- 2.
- 3.
2. Results
3. Applications
4. -Neighborhoods for Functions in the Classes and
- 1.
- 2.
- For of Definition 3 we obtain the definition of neighborhood with q-derivative, where is given by Equation (7).
- 3.
- For of Definition 3 we obtain the definition of the neighborhood for the classes and which is .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Janowski, W. Some extremal problems for certain families of analytic functions. Ann. Pol. Math. 1973, 28, 297–326. [Google Scholar] [CrossRef] [Green Version]
- Liczberski, P.; Połubiński, J. On (j,k)-symmetrical functions. Math. Bohemca 1995, 120, 13–28. [Google Scholar] [CrossRef]
- Al-Sarari, F.; Latha, S.; Bulboacă, T. On Janowski functions associated with (n,m)-symmetrical functions. J. Taibah Univ. Sci. 2019, 13, 972–978. [Google Scholar] [CrossRef] [Green Version]
- Al-Sarari, F.; Latha, S.; Frasin, B. A note on starlike functions associated with symmetric points. Afr. Mat. 2018, 24, 10–18. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Srivastava, M.; Tahir, M.; Khan, B.; Ahmad, Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Hussain, S.; Khan, S.; Mahmood, T.; Darus, M.; Shareef, Z. Janowski type q-convex and qclose-to-convex functions associated with q-conic domain. Mathematics 2020, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Govindaraj, M.; Sivasubramanian, S. On a class of analytic functions related to conic domains involving q-calculus. Anal. Math. 2017, 43, 475–487. [Google Scholar] [CrossRef]
- Khan, B.; Liu, Z.G.; Shaba, T.G.; Araci, S.; Khan, N.; Khan, M.G. Applications of q-Derivative Operator to the Subclass of Bi-Univalent Functions Involving-Chebyshev Polynomials. J. Math. 2022, 2022, 8162182. [Google Scholar] [CrossRef]
- Srivastava, M. Operators of Basic (or q-) Calculus and Fractional q-Calculus and Their Applications in Geometric Function Theory of Complex Analysis. Iran. Sci. Technol. Trans. Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Al-Sarari, F.; Frasin, B.; AL-Hawary, T.; Latha, S. A few results on generalized Janowski type functions associated with (j,k)-symmetrical functions. Acta Univ. Sapientiae Math. 2016, 8, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Al-Sarari, F.; Latha, S.; Darus, M. A few results on Janowski functions associated with k-symmetric points. Korean J. Math. 2017, 25, 389–403. [Google Scholar] [CrossRef]
- Sakaguchi, K. On a certain univalent mapping. J. Math. Soc. Jpn. 1959, 11, 72–75. [Google Scholar] [CrossRef]
- Agrawal, S.; Sahoo, S.K. A generalization of starlike functions of order alpha. Hokkaido Math. J. 2017, 46, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Mourad, E.; Ismail, H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Nevanlinna, R. Uber Uber die konforme abbildung sterngebieten. Over-Sikt Av Fin.-Vetensk. Soc. Forh. 1920, 63, 1–21. [Google Scholar]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Am. Math. Soc. 1975, 8, 598–601. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Neighborhoods of univalent functions. Proc. Am. Math. Soc. 1981, 81, 521–527. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Sheil-Small, T. Hadamard products of Schlicht functions and the Polya-Schoenberg conjecture. Comment. Math. Helv. 1979, 48, 119–135. [Google Scholar] [CrossRef]
- Ganesan, M.; Padmanabhan, K.S. Convolution conditions for certain classes of analytic functions. Int. J. Pure Appl. Math. 1984, 15, 777–780. [Google Scholar]
- Silverman, H.; Silvia, E.M.; Telage, D. Convolution conditions for convexity, starlikeness and spiral-likeness. Math. Z. 1978, 162, 125–130. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsarari, F.; Alzahrani, S. Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions. Symmetry 2022, 14, 1406. https://doi.org/10.3390/sym14071406
Alsarari F, Alzahrani S. Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions. Symmetry. 2022; 14(7):1406. https://doi.org/10.3390/sym14071406
Chicago/Turabian StyleAlsarari, Fuad, and Samirah Alzahrani. 2022. "Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions" Symmetry 14, no. 7: 1406. https://doi.org/10.3390/sym14071406
APA StyleAlsarari, F., & Alzahrani, S. (2022). Convolution Properties of q-Janowski-Type Functions Associated with (x,y)-Symmetrical Functions. Symmetry, 14(7), 1406. https://doi.org/10.3390/sym14071406