Preserving Classes of Meromorphic Functions through Integral Operators
Abstract
:1. Introduction and Preliminaries
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- ;
- (5)
- .
2. Main Results
3. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Totoi, A. On integral operators for meromorphic functions. Gen. Math. 2010, 18, 91–108. [Google Scholar]
- Mohammed, A.; Darus, M. Integral operators on new families of meromorphic functions of complex order. J. Inequalities Appl. 2011, 2011, 121. [Google Scholar] [CrossRef] [Green Version]
- Frasin, B.A. On an integral operator of meromorphic functions. Mat. Vesn. 2012, 64, 167–172. [Google Scholar]
- Mohammed, A.; Darus, M. On New -Valent Meromorphic Function Involving Certain Differential and Integral Operators. Abstr. Appl. Anal. 2014, 2014, 208530. [Google Scholar] [CrossRef] [Green Version]
- Güney, H.Ö.; Breaz, D.; Owa, S. A New Operator for Meromorphic Functions. Mathematics 2022, 10, 1985. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Geometric properties of the meromorphic functions class through special functions associated with a linear operator. Adv. Contin. Discret. Models 2022, 2022, 17. [Google Scholar] [CrossRef]
- Khadr, M.A.; Ali, A.M.; Ahmed, F.G. New Subclass of Meromorphic Functions Associated with Hypergeometric Function. AL-Rafidain J. Comput. Sci. Math. 2021, 15, 63–71. [Google Scholar] [CrossRef]
- Aouf, M.K.; El-Emam, F.Z. Fekete–Szegö Problems for Certain Classes of Meromorphic Functions Involving -Al-Oboudi Differential Operator. J. Math. 2022, 2022, 4731417. [Google Scholar] [CrossRef]
- Yu, H.; Li, X.M. Results on Logarithmic Borel Exceptional Values of Meromorphic Functions with Their Difference Operators. Anal Math. 2022. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Differential Subordinations. Theory and Applications; Marcel Dekker Inc.: New York, NY, USA; Basel, Switzerland, 2000. [Google Scholar]
- Mocanu, P.T.; Bulboacă, T.; Sălăgean, Ş.G. The Geometric Theory of Univalent Functions; Casa Cărţii de Ştiinţă: Cluj-Napoca, Romania, 2006. (In Romanian) [Google Scholar]
- Jackson, F.H. On q-functions and a certain difference operator. Trans. R. Soc. Edinb. 1908, 46, 253–281. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-definite integrals. Q. J. Pure Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Cătaş, A. On the Fekete-Szegö problem for certain classes of meromorphic functions using p,q—Derivative operator and a p,q-wright type hypergeometric function. Symmetry 2021, 13, 2143. [Google Scholar] [CrossRef]
- Shah, S.A.; Noor, K.I. Study on the q-analogue of a certain family of linear operators. Turk. J. Math. 2019, 43, 2707–2714. [Google Scholar] [CrossRef]
- Shamsan, H.; Latha, S. On generalized bounded Mocanu variation related to q-derivative and conic regions. Ann. Pure Appl. Math. 2018, 17, 67–83. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomials. Appl. Math. Inf. Sci. 2011, 5, 390–444. [Google Scholar]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Raza, N.; AbuJarad, E.S.A.; Srivastava, G.; AbuJarad, M.H. Fekete-Szegö inequality for classes of (p, q)-starlike and (p, q)-convex functions. Rev. Real Acad. Cienc. Exactas, FÍSicas Nat. Ser. Mat. (RACSAM) 2019, 113, 3563–3584. [Google Scholar] [CrossRef]
- Uçar, Ö.; Mert, O.; Polatoǧlu, Y. Some properties of q-close-to-convex functions. Hacet. J. Math. Stat. 2017, 46, 1105–1112. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Wanas, A.K.; Srivastava, R. Applications of the q-Srivastava-Attiya operator involving a certain family of bi-univalent functions associated with the Horadam polynomials. Symmetry 2021, 13, 1230. [Google Scholar] [CrossRef]
- Khan, Q.; Arif, M.; Raza, M.; Srivastava, G.; Tang, H. Some applications of a new integral operator in q-analog for multivalent functions. Mathematics 2019, 7, 1178. [Google Scholar] [CrossRef] [Green Version]
- Khan, B.; Srivastava, H.M.; Tahir, M.; Darus, M.; Ahmad, Q.Z.; Khan, N. Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions. AIMS Math. 2021, 6, 1024–1039. [Google Scholar] [CrossRef]
- Mahmood, S.; Raza, N.; Abujarad, E.S.A.; Srivastava, G.; Srivastava, H.M.; Malik, S.N. Geometric properties of certain classes of analytic functions associated with a q-integral operator. Symmetry 2019, 11, 719. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Shaba, T.G.; Younis, J.; Khan, B.; Mashwani, W.K.; Çağlar, M. Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials. Appl. Math. Sci. Eng. 2022, 30, 501–520. [Google Scholar] [CrossRef]
- Wanas, A.K.; Cotîrlǎ, L.I. Initial coefficient estimates and Fekete–Szegö inequalities for new families of bi-univalent functions governed by (p-q)-Wanas operator. Symmetry 2021, 13, 2118. [Google Scholar] [CrossRef]
- Wanas, A.K.; Hammadi, N.J. Applications of Fractional Calculus on a Certain Class of Univalent Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2022, 9, 117–129. [Google Scholar] [CrossRef]
- Shaba, T.G.; Wanas, A.K. Coefficient bounds for a certain families of m-fold symmetric bi-univalent functions associated with q-analogue of Wanas operator. Acta Univ. Apulensis 2021, 68, 25–37. [Google Scholar]
- Wanas, A.K.; Murugusundaramoorthy, G. Differential sandwich results for Wanas operator of analytic functions. Math. Moravica 2020, 24, 17–28. [Google Scholar] [CrossRef]
- Altınkaya, Ş.; Wanas, A.K. Some Properties for Fuzzy Differential Subordination Defined by Wanas Operator. Earthline J. Math. Sci. 2020, 4, 51–62. [Google Scholar] [CrossRef]
- Wanas, A.K.; Altınkaya, Ş. Differential Subordination Results for Holomorphic Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2020, 3, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Wanas, A.K.; Pall-Szabo, A.O. Some Properties for Strong Differential Subordination of Analytic Functions Associated with Wanas Operator. Earthline J. Math. Sci. 2020, 4, 29–38. [Google Scholar] [CrossRef]
- Wanas, A.K. Fuzzy differential subordinations for analytic functions involving Wanas operator. Ikonion J. Math. 2020, 2, 1–9. [Google Scholar]
- Wanas, A.K.; Choi, J.; Cho, N.E. Geometric properties for a family of holomorphic functions associated with Wanas operator defined on complex Hilbert space. Asian-Eur. J. Math. 2021, 14, 07. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Totoi, E.-A.; Cotîrlă, L.-I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry 2022, 14, 1545. https://doi.org/10.3390/sym14081545
Totoi E-A, Cotîrlă L-I. Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry. 2022; 14(8):1545. https://doi.org/10.3390/sym14081545
Chicago/Turabian StyleTotoi, Elisabeta-Alina, and Luminiţa-Ioana Cotîrlă. 2022. "Preserving Classes of Meromorphic Functions through Integral Operators" Symmetry 14, no. 8: 1545. https://doi.org/10.3390/sym14081545
APA StyleTotoi, E. -A., & Cotîrlă, L. -I. (2022). Preserving Classes of Meromorphic Functions through Integral Operators. Symmetry, 14(8), 1545. https://doi.org/10.3390/sym14081545