Infinitely Many Solutions for the Discrete Boundary Value Problems of the Kirchhoff Type
Abstract
:1. Introduction
2. Preliminaries
- (a)
- If , then for each , the following alternatives hold:
- possesses a global minimum;
- There is a sequence of critical points (local minima) of , such that .
- (b)
- If , then for each the following alternatives hold:
- T is a global minimum of , which is a local minimum of ;
- ()
- There is a sequence of pairwise distinct critical points (local minima) of , with , which weakly converges to a global minimum of .
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zheng, B.; Yu, J.S.; Li, J. Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression. SIAM J. Appl. Math. 2021, 81, 142–149. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Yu, J.S. One discrete dynamical model on the Wolbachia infection frequency in mosquito populations. Sci. China Math. 2022, 65, 1749–1764. [Google Scholar] [CrossRef]
- Zheng, B.; Yu, J.S. Existence and uniqueness of periodic orbits in a discrete model on Wolbachia infection frequency. Adv. Nonlinear Anal. 2021, 11, 212–224. [Google Scholar] [CrossRef]
- Yu, J.S.; Li, J. Discrete-time models for interactive wild and sterile mosquitoes with general time steps. Math. Biosci. 2022, 346, 108797. [Google Scholar] [CrossRef]
- El-Metwally, H.; Yalcinkaya, I.; Cinar, C. Global stability of an economic model. Util. Math. 2014, 95, 235–244. [Google Scholar]
- Henderson, J.; Thompson, H.B. Existence of multiple solutions for second-order discrete boundary value problems. Comput. Math. Appl. 2002, 43, 1239–1248. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Boundary value problems for second-order nonlinear difference equations with discrete phi-Laplacian and singular phi. J. Differ. Equ. Appl. 2008, 14, 1099–1118. [Google Scholar] [CrossRef]
- Jankowski, T. First-order functional difference equations with nonlinear boundary value problems. Comput. Math. Appl. 2010, 59, 1937–1943. [Google Scholar] [CrossRef]
- Zhang, B.G.; Wang, S.L.; Liu, J.S.; Cheng, Y.R. Existence of positive solutions for BVPs of fourth-order difference equations. Appl. Math. Comput. 2002, 131, 583–591. [Google Scholar] [CrossRef]
- Karapinar, E. A short survey on the recent fixed point results on b-Metric spaces. Constr. Math. Anal. 2018, 1, 15–44. [Google Scholar] [CrossRef]
- Guo, Z.M.; Yu, J.S. Existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A 2003, 46, 506–515. [Google Scholar] [CrossRef] [Green Version]
- Du, S.J.; Zhou, Z. On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curvature operator. Adv. Nonlinear Anal. 2022, 11, 198–211. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Z. Multiple solutions for partial discrete Dirichlet problems involving the p-Laplacian. Mathematics 2020, 8, 2030. [Google Scholar] [CrossRef]
- Ling, J.X.; Zhou, Z. Positive solutions of the discrete Robin problem with ϕ-Laplacian. Discret. Contin. Dyn. Syst. 2021, 13, 3183–3196. [Google Scholar]
- Bonanno, G.; Candito, P. Infinitely many solutions for a class of discrete non-linear boundary value problems. Appl. Anal. 2009, 88, 605–616. [Google Scholar] [CrossRef]
- Zhou, Z.; Ling, J.X. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕ(c)-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [Google Scholar] [CrossRef]
- D’Agui, G.; Mawhin, J.; Sciammetta, A. Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian. J. Math. Anal. Appl. 2017, 447, 383–397. [Google Scholar] [CrossRef]
- Campiti, M. Second-order differential operators with non-local centcel’s boundary conditions. Constr. Math. Anal. 2019, 2, 144–152. [Google Scholar]
- Liu, X.; Zhang, Y.B.; Shi, H.P.; Deng, X.Q. Periodic solutions for fourth-order nonlinear functional difference equations. Math. Methods Appl. Sci. 2015, 38, 1–10. [Google Scholar] [CrossRef]
- Zhang, J.M.; Wang, S.L.; Liu, J.S.; Cheng, Y.R. Multiple periodic solutions for resonant difference equations. Adv. Differ. Equ. 2014, 236, 14. [Google Scholar] [CrossRef]
- Mei, P.; Zhou, Z. Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 2022, 130, 108006. [Google Scholar] [CrossRef]
- Lin, G.H.; Zhou, Z.; Yu, J.S. Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic Potentials. J. Dyn. Differ. Equ. 2020, 32, 527–555. [Google Scholar] [CrossRef]
- Zhang, Q.Q. Homoclinic orbits for discrete hamiltonlian systems with local super-quadratic conditions. Commun. Pure Appl. Anal. 2019, 18, 425–434. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, A.; Vetro, C. A note on homoclinic solutions of (p, q)-Laplacian difference equations. J. Differ. Equ. Appl. 2019, 25, 331–341. [Google Scholar] [CrossRef]
- Kuang, J.H.; Guo, Z.M. Heteroclinic solutions for a class of p-Laplacian difference equations with a parameter. Appl. Math. Lett. 2020, 100, 106034. [Google Scholar] [CrossRef]
- Zou, W.M.; He, X.M. Infinitely many positive solutions for Kirchhoff-type problems. Nonlinear Anal. 2009, 70, 1407–1414. [Google Scholar]
- Cheng, B.T.; Wu, X. Existence results of positive solutions of Kirchhoff type problems. Nonlinear Anal. 2009, 71, 4883–4892. [Google Scholar] [CrossRef]
- Tang, X.H.; Cheng, B.T. Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 2016, 261, 2384–2402. [Google Scholar] [CrossRef]
- Seus, D.; Mitra, K.; Pop, I.S.; Radu, F.A.; Rohde, C. A linear domain decomposition method for partially saturated flow in porous media. Comput. Meth. Appl. Mech. Eng. 2018, 333, 331–355. [Google Scholar] [CrossRef]
- Berardi, M.; Difonzo, F.V. A quadrature-based scheme for numerical solutions to Kirchhoff transformed Richards’ equation. J. Comput. Dyn. 2022, 9, 69–84. [Google Scholar] [CrossRef]
- Kirchhoff, G. Mechanik; Teubner: Leipzig, Germany, 1883. [Google Scholar]
- Yang, J.; Liu, J. Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups. Adv. Differ. Equ. 2013, 308, 1–14. [Google Scholar] [CrossRef]
- Long, Y.H.; Deng, X.Q. Existence and multiplicity solutions for discrete Kirchhoff type problems. Appl. Math. Lett. 2022, 126, 107817. [Google Scholar] [CrossRef]
- Bonanno, G.; Bisci, G.M. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, 2009, 1–20. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Zhou, Z. Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations. Adv. Differ. Equ. 2008, 2008, 1–10. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhou, Z. Infinitely Many Solutions for the Discrete Boundary Value Problems of the Kirchhoff Type. Symmetry 2022, 14, 1844. https://doi.org/10.3390/sym14091844
Zhang W, Zhou Z. Infinitely Many Solutions for the Discrete Boundary Value Problems of the Kirchhoff Type. Symmetry. 2022; 14(9):1844. https://doi.org/10.3390/sym14091844
Chicago/Turabian StyleZhang, Weihua, and Zhan Zhou. 2022. "Infinitely Many Solutions for the Discrete Boundary Value Problems of the Kirchhoff Type" Symmetry 14, no. 9: 1844. https://doi.org/10.3390/sym14091844
APA StyleZhang, W., & Zhou, Z. (2022). Infinitely Many Solutions for the Discrete Boundary Value Problems of the Kirchhoff Type. Symmetry, 14(9), 1844. https://doi.org/10.3390/sym14091844