Quasi-Monomiality Principle and Certain Properties of Degenerate Hybrid Special Polynomials
Abstract
:1. Introduction and Preliminaries
- (i)
- If and possesses differential realizations, then the polynomial satisfies the differential equation by the expression:
- (ii)
- The expression:
- (iii)
- Further, in view of (12), the expression:
2. 3-Variable Degenerate Hermite-Based Appell Polynomials
3. Symmetric Identities
4. Operational Formalism
5. Examples
6. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Appell, P. Sur Une Classe de Polynômes. Ann. Sci. École. Norm. Sup. 1880, 9, 119–144. [Google Scholar] [CrossRef]
- Hermite, C. Sur un nouveau dvelopment en sries de functions. Compt. Rend. Acad. Sci. Paris 1864, 58, 93–100. [Google Scholar]
- Ryoo, C.S. Notes on degenerate tangent polynomials. Glob. J. Pure Appl. Math. 2015, 11, 3631–3637. [Google Scholar]
- Hwang, K.W.; Ryoo, C.S. Differential equations associated with two variable degenerate Hermite polynomials. Mathematics 2020, 8, 228. [Google Scholar] [CrossRef]
- Kim, T. A Note on the Degenerate Type of Complex Appell Polynomials. Symmetry 2019, 11, 1339. [Google Scholar] [CrossRef]
- Kim, T.; Yao, Y.; Kim, D.S.; Jang, G.-W. Degenerate r-Stirling numbers and r-Bell polynomials. Russ. J. Math. Phys. 2018, 25, 44–58. [Google Scholar] [CrossRef]
- Kim, D.S.; Kim, T.; Lee, H. A note on degenerate Euler and Bernoulli polynomials of complex variable. Symmetry 2019, 11, 1168. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S. Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials. Tbil. Math. J. 2019, 12, 93–104. [Google Scholar] [CrossRef]
- Wani, S.A.; Khan, S.; Naikoo, S. Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials. Boletãn Soc. Matemãtica Mex. 2019, 26, 617–646. [Google Scholar] [CrossRef]
- Khan, S.; Riyasat, M.; Wani, S.A. On some classes of differential equations and associated integral equations for the Laguerre-Appell polynomials. Adv. Pure Appl. Math. 2017, 5, 185–194. [Google Scholar] [CrossRef]
- Khan, S.; Wani, S.A. Differential and integral equations associated with some hybrid families of Legendre polynomials. Tbil. Math. J. 2018, 11, 127–139. [Google Scholar]
- Khan, S.; Wani, S.A. A note on Differential and integral equations for the Laguerre-Hermite polynomials. In Proceedings of the Second International Conference on Computer and Communication Technologies, IC3T 2017. Adv. Intell. Syst. Comput. 2016, 381, 547–555. [Google Scholar]
- Khan, S.; Wani, S.A. A note on differential and integral equations for the Legendre-Hermite polynomials. Int. J. Adv. Res. Sci. Eng. 2018, 7, 514–520. [Google Scholar]
- Araci, S.; Riyasat, M.; Wani, S.A.; Khan, S. Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials. App. Math. Inf. Sci. 2017, 11, 1335–1346. [Google Scholar] [CrossRef]
- Hwang, K.W.; Seol, Y.; Ryoo, C.S. Explicit Identities for 3-Variable Degenerate Hermite Kampe deFeriet Polynomials and Differential Equation Derived from Generating Function. Symmetry 2021, 13, 7. [Google Scholar] [CrossRef]
- Dattoli, G. Generalized polynomials operational identities and their applications. J. Comput. Appl. Math. 2000, 118, 111–123. [Google Scholar] [CrossRef]
- Dattoli, G. Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, Advanced Special functions and applications, (Melfi, 1999). Melfi Sch. Adv. Top. Math. Phys. 2000, 1, 147–164. [Google Scholar]
- Steffensen, J.F. The poweriod, an extension of the mathematical notion of power. Acta Math. 1941, 73, 333–366. [Google Scholar] [CrossRef]
- Appell, P.; Kampé de Fériet, J. Fonctions Hypergéométriques et Hypersphériques: Polynômes d’Hermite; Gauthier-Villars: Paris, France, 1926. [Google Scholar]
- Bretti, G.; Cesarano, C.; Ricci, P.E. Laguerre-Type Exponentials and Generalized Appell Polynomials. Comput. Math. Appl. 2004, 48, 833–839. [Google Scholar]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill Book Company: New York, NY, USA, 1955; Volume III. [Google Scholar]
- Sandor, J.; Crstici, B. Handbook of Number Theory; Kluwer Academic: London, UK, 2004; Volume II. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alyusof, R. Quasi-Monomiality Principle and Certain Properties of Degenerate Hybrid Special Polynomials. Symmetry 2023, 15, 407. https://doi.org/10.3390/sym15020407
Alyusof R. Quasi-Monomiality Principle and Certain Properties of Degenerate Hybrid Special Polynomials. Symmetry. 2023; 15(2):407. https://doi.org/10.3390/sym15020407
Chicago/Turabian StyleAlyusof, Rabab. 2023. "Quasi-Monomiality Principle and Certain Properties of Degenerate Hybrid Special Polynomials" Symmetry 15, no. 2: 407. https://doi.org/10.3390/sym15020407
APA StyleAlyusof, R. (2023). Quasi-Monomiality Principle and Certain Properties of Degenerate Hybrid Special Polynomials. Symmetry, 15(2), 407. https://doi.org/10.3390/sym15020407