Figure 1.
Absolute stability region of HTM2.
Figure 1.
Absolute stability region of HTM2.
Figure 2.
Absolute stability region of HTM3.
Figure 2.
Absolute stability region of HTM3.
Figure 3.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 3.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 4.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 4.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 5.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 5.
Comparison of HTM2 method with relevant methods for problem 1 at .
Figure 6.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 6.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 7.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 7.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 8.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 8.
Comparison of HTM3 method with relevant methods for problem 1 at .
Figure 9.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 9.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 10.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 10.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 11.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 11.
Comparison of HTM2 method with relevant methods for problem 2 at .
Figure 12.
Comparison of HTM3 method with relevant methods for problem 2 at .
Figure 12.
Comparison of HTM3 method with relevant methods for problem 2 at .
Figure 13.
Comparison of HTM3 method with relevant methods for problem 2 at .
Figure 13.
Comparison of HTM3 method with relevant methods for problem 2 at .
Figure 14.
Comparison of HTM3 method with relevant methods for problem 2 at .
Figure 14.
Comparison of HTM3 method with relevant methods for problem 2 at .
Table 1.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.1).
Table 1.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.1).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024016952473958 | 1.024016923095703 | 1.024016834960938 | 1.024017011230469 | 1.024018966423752 |
0.2 | 1.048582996382734 | 1.048578896534070 | 1.048578835761557 | 1.048578653444039 | 1.048579018079106 | 1.048583005159566 |
0.3 | 1.073702928838884 | 1.073696657191696 | 1.073696562908939 | 1.073696280060730 | 1.073696845757242 | 1.073702942998442 |
0.4 | 1.099389726731484 | 1.099381199729522 | 1.099381069716590 | 1.099380679677929 | 1.099381459755449 | 1.099389746998454 |
0.5 | 1.125654495329782 | 1.125643627697525 | 1.125643459626485 | 1.125642955413594 | 1.125643963839717 | 1.125654522478015 |
0.6 | 1.152508475906471 | 1.152495180661248 | 1.152494972091990 | 1.152494346384571 | 1.152495597799943 | 1.152508510761309 |
0.7 | 1.179963043224405 | 1.179947231691585 | 1.179946980067549 | 1.179946225195960 | 1.179947734939917 | 1.179963086665087 |
0.8 | 1.208029702753715 | 1.208011284585090 | 1.208010987228892 | 1.208010095161021 | 1.208011879297848 | 1.208029755715844 |
0.9 | 1.236720087608148 | 1.236698970803669 | 1.236698624912622 | 1.236697587240450 | 1.236699662586248 | 1.236720151086232 |
1.0 | 1.266045955189318 | 1.266022046122342 | 1.266021648763880 | 1.266020456689755 | 1.266022840839900 | 1.266046030239382 |
Table 2.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.05).
Table 2.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.05).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024018455637443 | 1.024018448167912 | 1.024018425759318 | 1.024018470576506 | 1.024018964748139 |
0.2 | 1.048582996382734 | 1.048581962772757 | 1.048581947321444 | 1.048581900967507 | 1.048581993675384 | 1.048583001384183 |
0.3 | 1.073702928838884 | 1.073701347715753 | 1.073701323745033 | 1.073701251832879 | 1.073701395657195 | 1.073702936666439 |
0.4 | 1.099389726731483 | 1.099387577042795 | 1.099387543988666 | 1.099387444826288 | 1.099387643151058 | 1.099389737618628 |
0.5 | 1.125654495329782 | 1.125651755590691 | 1.125651712861745 | 1.125651584674923 | 1.125651841048592 | 1.125654509523097 |
0.6 | 1.152508475906471 | 1.152505124202791 | 1.152505071179159 | 1.152504912108291 | 1.152505230250067 | 1.152508493666189 |
0.7 | 1.179963043224405 | 1.179959057216482 | 1.179958993248755 | 1.179958801345611 | 1.179959185151955 | 1.179963064824991 |
0.8 | 1.208029702753716 | 1.208025059681107 | 1.208024984089226 | 1.208024757313632 | 1.208025210864895 | 1.208029728484451 |
0.9 | 1.236720087608148 | 1.236714764295145 | 1.236714676367269 | 1.236714412583710 | 1.236714940150929 | 1.236720117773737 |
1.0 | 1.266045955189318 | 1.266039928051356 | 1.266039827042708 | 1.266039524016851 | 1.266040130068695 | 1.266045990110506 |
Table 3.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.025).
Table 3.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 1 (h = 0.025).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024018835138843 | 1.024018833255648 | 1.024018827606067 | 1.024018838905230 | 1.024018963125439 |
0.2 | 1.048582996382734 | 1.048582736891561 | 1.048582732996068 | 1.048582721309593 | 1.048582744682544 | 1.048582997988505 |
0.3 | 1.073702928838884 | 1.073702531894975 | 1.073702525851689 | 1.073702507721835 | 1.073702543981544 | 1.073702931338594 |
0.4 | 1.099389726731484 | 1.099389187051215 | 1.099389178717997 | 1.099389153718346 | 1.099389203717649 | 1.099389730190115 |
0.5 | 1.125654495329782 | 1.125653807521091 | 1.125653796748901 | 1.125653764432330 | 1.125653829065472 | 1.125654499815693 |
0.6 | 1.152508475906471 | 1.152507634469638 | 1.152507621102265 | 1.152507581000150 | 1.152507661204383 | 1.152508481491529 |
0.7 | 1.179963043224405 | 1.179962042553033 | 1.179962026426831 | 1.179961978048225 | 1.179962074805438 | 1.179963049984132 |
0.8 | 1.208029702753716 | 1.208028537135910 | 1.208028518079512 | 1.208028460910319 | 1.208028575248708 | 1.208029710767429 |
0.9 | 1.236720087608148 | 1.236718751227908 | 1.236718729061944 | 1.236718662564059 | 1.236718795559836 | 1.236720096959107 |
1.0 | 1.266045955189318 | 1.266044442128150 | 1.266044416664960 | 1.266044340275396 | 1.266044493054533 | 1.266045965964875 |
Table 4.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.1).
Table 4.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.1).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024018951072459 | 1.024018949714177 | 1.024018951961812 | 1.024018953256430 |
0.2 | 1.048582996382734 | 1.048582973405348 | 1.048582970599488 | 1.048582975242551 | 1.048582977917067 |
0.3 | 1.073702928838884 | 1.073702893737675 | 1.073702889390857 | 1.073702896583903 | 1.073702900727513 |
0.4 | 1.099389726731484 | 1.099389679073476 | 1.099389673088104 | 1.099389682992669 | 1.099389688698611 |
0.5 | 1.125654495329782 | 1.125654434675028 | 1.125654426949154 | 1.125654439733982 | 1.125654447099669 |
0.6 | 1.152508475906471 | 1.152508401808229 | 1.152508392235414 | 1.152508408076681 | 1.152508417203833 |
0.7 | 1.179963043224405 | 1.179962955229337 | 1.179962943698518 | 1.179962962780061 | 1.179962973774839 |
0.8 | 1.208029702753715 | 1.208029600402102 | 1.208029586797452 | 1.208029609310995 | 1.208029622284133 |
0.9 | 1.236720087608148 | 1.236719970434119 | 1.236719954634907 | 1.236719980780295 | 1.236719995847236 |
1.0 | 1.266045955189318 | 1.266045822721111 | 1.266045804601567 | 1.266045834586991 | 1.266045851868019 |
Table 5.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.05).
Table 5.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.05).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024018960929323 | 1.024018960759068 | 1.024018961041800 | 1.024018961208012 |
0.2 | 1.048582996382734 | 1.048582993484895 | 1.048582993133194 | 1.048582993717242 | 1.048582994060601 |
0.3 | 1.073702928838884 | 1.073702924412083 | 1.073702923867236 | 1.073702924772033 | 1.073702925303975 |
0.4 | 1.099389726731483 | 1.099389720721158 | 1.099389719970937 | 1.099389721216793 | 1.099389721949271 |
0.5 | 1.125654495329782 | 1.125654487680494 | 1.125654486712123 | 1.125654488320255 | 1.125654489265756 |
0.6 | 1.152508475906471 | 1.152508466561927 | 1.152508465362070 | 1.152508467354628 | 1.152508468526188 |
0.7 | 1.179963043224405 | 1.179963032127484 | 1.179963030682225 | 1.179963033082322 | 1.179963034493546 |
0.8 | 1.208029702753716 | 1.208029689846496 | 1.208029688141323 | 1.208029690973061 | 1.208029692638139 |
0.9 | 1.236720087608148 | 1.236720072831934 | 1.236720070851721 | 1.236720074140224 | 1.236720076073946 |
1.0 | 1.266045955189318 | 1.266045938484675 | 1.266045936213665 | 1.266045939985103 | 1.266045942202880 |
Table 6.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.025).
Table 6.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 1 (h = 0.025).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.024018962351867 | 1.024018962173255 | 1.024018962151945 | 1.024018962187397 | 1.024018962208452 |
0.2 | 1.048582996382734 | 1.048582996018889 | 1.048582995974869 | 1.048582996048102 | 1.048582996091597 |
0.3 | 1.073702928838884 | 1.073702928283070 | 1.073702928214875 | 1.073702928328326 | 1.073702928395708 |
0.4 | 1.099389726731484 | 1.099389725976853 | 1.099389725882953 | 1.099389726039167 | 1.099389726131950 |
0.5 | 1.125654495329782 | 1.125654494369377 | 1.125654494248174 | 1.125654494449812 | 1.125654494569575 |
0.6 | 1.152508475906471 | 1.152508474733226 | 1.152508474583051 | 1.152508474832888 | 1.152508474981283 |
0.7 | 1.179963043224405 | 1.179963041831152 | 1.179963041650263 | 1.179963041951197 | 1.179963042129945 |
0.8 | 1.208029702753716 | 1.208029701133186 | 1.208029700919767 | 1.208029701274820 | 1.208029701485716 |
0.9 | 1.236720087608148 | 1.236720085752975 | 1.236720085505133 | 1.236720085917455 | 1.236720086162370 |
1.0 | 1.266045955189318 | 1.266045953092043 | 1.266045952807807 | 1.266045953280678 | 1.266045953561562 |
Table 7.
Absolute errors for problem 1 using HTM2 and other methods for .
Table 7.
Absolute errors for problem 1 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 2.0099 | 2.0393 | 2.1274 | 1.9511 | 4.0719 |
0.2 | 4.0998 | 4.1606 | 4.3429 | 3.9783 | 8.7768 |
0.3 | 6.2716 | 6.3659 | 6.6488 | 6.0831 | 1.4160 |
0.4 | 8.5270 | 8.6570 | 9.0471 | 8.2670 | 2.0267 |
0.5 | 1.0868 | 1.1036 | 1.1540 | 1.0531 | 2.7148 |
0.6 | 1.3295 | 1.3504 | 1.4130 | 1.2878 | 3.4855 |
0.7 | 1.5812 | 1.6063 | 1.6818 | 1.5308 | 4.3441 |
0.8 | 1.8418 | 1.8716 | 1.9608 | 1.7823 | 5.2962 |
0.9 | 2.1117 | 2.1463 | 2.2500 | 2.0425 | 6.3478 |
1.0 | 2.3909 | 2.4306 | 2.5498 | 2.3114 | 7.5050 |
Table 8.
Absolute errors for problem 1 using HTM2 and other methods for .
Table 8.
Absolute errors for problem 1 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 5.0671 | 5.1418 | 5.3659 | 4.9178 | 2.3963 |
0.2 | 1.0336 | 1.0491 | 1.0954 | 1.0027 | 5.0014 |
0.3 | 1.5811 | 1.6051 | 1.6770 | 1.5332 | 7.8276 |
0.4 | 2.1497 | 2.1827 | 2.2819 | 2.0836 | 1.0887 |
0.5 | 2.7397 | 2.7825 | 2.9107 | 2.6543 | 1.4193 |
0.6 | 3.3517 | 3.4047 | 3.5638 | 3.2457 | 1.7760 |
0.7 | 3.9860 | 4.0500 | 4.2419 | 3.8581 | 2.1601 |
0.8 | 4.6431 | 4.7187 | 4.9454 | 4.4919 | 2.5731 |
0.9 | 5.3233 | 5.4112 | 5.6750 | 5.1475 | 3.0166 |
1.0 | 6.0271 | 6.1281 | 6.4312 | 5.8251 | 3.4921 |
Table 9.
Absolute errors for problem 1 using HTM2 and other methods for .
Table 9.
Absolute errors for problem 1 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.2721 | 1.2910 | 1.3475 | 1.2345 | 7.7357 |
0.2 | 2.5949 | 2.6339 | 2.7507 | 2.5170 | 1.6058 |
0.3 | 3.9694 | 4.0299 | 4.2112 | 3.8486 | 2.4997 |
0.4 | 5.3968 | 5.4801 | 5.7301 | 5.2301 | 3.4586 |
0.5 | 6.8781 | 6.9858 | 7.3090 | 6.6626 | 4.4859 |
0.6 | 8.4144 | 8.5480 | 8.9491 | 8.1470 | 5.5851 |
0.7 | 1.0007 | 1.0168 | 1.0652 | 9.6842 | 6.7597 |
0.8 | 1.1656 | 1.1847 | 1.2418 | 1.1275 | 8.0137 |
0.9 | 1.3364 | 1.3585 | 1.4250 | 1.2920 | 9.3510 |
1.0 | 1.5131 | 1.5385 | 1.6149 | 1.4621 | 1.0776 |
Table 10.
Absolute errors for problem 1 using HTM3 and other methods for .
Table 10.
Absolute errors for problem 1 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 1.1279 | 1.2638 | 1.0390 | 9.0954 |
0.2 | 2.2977 | 2.5783 | 2.1140 | 1.8466 |
0.3 | 3.5101 | 3.9448 | 3.2255 | 2.8111 |
0.4 | 4.7658 | 5.3643 | 4.3739 | 3.8033 |
0.5 | 6.0655 | 6.838 | 5.5596 | 4.8230 |
0.6 | 7.4098 | 8.3671 | 6.7830 | 5.8703 |
0.7 | 8.7995 | 9.9526 | 8.0444 | 6.9450 |
0.8 | 1.0235 | 1.1596 | 9.3443 | 8.0470 |
0.9 | 1.1717 | 1.3297 | 1.0683 | 9.1761 |
1.0 | 1.3247 | 1.5059 | 1.2060 | 1.0332 |
Table 11.
Absolute errors for problem 1 using HTM3 and other methods for .
Table 11.
Absolute errors for problem 1 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 1.4225 | 1.5928 | 1.3101 | 1.1439 |
0.2 | 2.8978 | 3.2495 | 2.6655 | 2.3221 |
0.3 | 4.4268 | 4.9716 | 4.0669 | 3.5349 |
0.4 | 6.0103 | 6.7605 | 5.5147 | 4.7822 |
0.5 | 7.6493 | 8.6177 | 7.0000 | 6.0640 |
0.6 | 9.3445 | 1.0544 | 8.5518 | 7.3803 |
0.7 | 1.1097 | 1.2542 | 1.0142 | 8.7309 |
0.8 | 1.2907 | 1.4612 | 1.1781 | 1.0116 |
0.9 | 1.4776 | 1.6756 | 1.3468 | 1.1534 |
1.0 | 1.6705 | 1.8976 | 1.5204 | 1.2986 |
Table 12.
Absolute errors for problem 1 using HTM3 and other methods for .
Table 12.
Absolute errors for problem 1 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 1.7861 | 1.9992 | 1.6447 | 1.4342 |
0.2 | 3.6385 | 4.0786 | 3.3463 | 2.9114 |
0.3 | 5.5581 | 6.2401 | 5.1056 | 4.4318 |
0.4 | 7.5463 | 8.4853 | 6.9232 | 5.9953 |
0.5 | 9.6041 | 1.0816 | 8.7997 | 7.6021 |
0.6 | 1.1732 | 1.3234 | 1.0736 | 9.2519 |
0.7 | 1.3933 | 1.5741 | 1.2732 | 1.0945 |
0.8 | 1.6205 | 1.8339 | 1.4789 | 1.2680 |
0.9 | 1.8552 | 2.1030 | 1.6907 | 1.4458 |
1.0 | 2.0973 | 2.3815 | 1.9086 | 1.6278 |
Table 13.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.1).
Table 13.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.1).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.077662301168311 | 1.077662235372562 | 1.077662233543790 | 1.077662228057014 | 1.077662239029879 | 1.077662302115619 |
0.2 | 1.155149409193027 | 1.155149277848099 | 1.155149274197407 | 1.155149263244417 | 1.155149285149027 | 1.155149411084106 |
0.3 | 1.232461630508842 | 1.232461433860695 | 1.232461428394920 | 1.232461411996225 | 1.232461444791564 | 1.232461633340158 |
0.4 | 1.309599271090915 | 1.309599009384900 | 1.309599002110860 | 1.309598980286920 | 1.309599023932070 | 1.309599274858934 |
0.5 | 1.386562636455415 | 1.386562309936298 | 1.386562300860797 | 1.386562273632022 | 1.386562328086166 | 1.386562641156632 |
0.6 | 1.463352031660152 | 1.463351640572091 | 1.463351629701914 | 1.463351597088663 | 1.463351662311085 | 1.463352037291060 |
0.7 | 1.539967761305115 | 1.539967305891663 | 1.539967293233580 | 1.539967255256163 | 1.539967331206245 | 1.539967767862210 |
0.8 | 1.616410129533037 | 1.616409610037156 | 1.616409595597920 | 1.616409552276596 | 1.616409638913823 | 1.616410137012834 |
0.9 | 1.692679440029992 | 1.692678856694046 | 1.692678840480392 | 1.692678791835372 | 1.692678889119325 | 1.692679448429009 |
1.0 | 1.768775996025961 | 1.768775349091707 | 1.768775331110355 | 1.768775277161798 | 1.768775385052160 | 1.768776005340717 |
Table 14.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.05).
Table 14.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.05).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.077662301168311 | 1.077662284732696 | 1.077662284276013 | 1.077662282905904 | 1.077662285646036 | 1.077662301400763 |
0.2 | 1.155149409193027 | 1.155149376383397 | 1.155149375471741 | 1.155149372736659 | 1.155149378206653 | 1.155149409657066 |
0.3 | 1.232461630508842 | 1.232461581386640 | 1.232461580021718 | 1.232461575926784 | 1.232461584116397 | 1.232461631203599 |
0.4 | 1.309599271090915 | 1.309599205717424 | 1.309599203900941 | 1.309599198451264 | 1.309599209350277 | 1.309599272015514 |
0.5 | 1.386562636455415 | 1.386562554891789 | 1.386562552625442 | 1.386562545826120 | 1.386562559424340 | 1.386562637609003 |
0.6 | 1.463352031660152 | 1.463351933967384 | 1.463351931252869 | 1.463351923108986 | 1.463351939396244 | 1.463352033041868 |
0.7 | 1.539967761305115 | 1.539967647544044 | 1.539967644383051 | 1.539967634899678 | 1.539967653865831 | 1.539967762914094 |
0.8 | 1.616410129533037 | 1.616409999764360 | 1.616409996158576 | 1.616409985340773 | 1.616410006975703 | 1.616410131368426 |
0.9 | 1.692679440029992 | 1.692679294314255 | 1.692679290265361 | 1.692679278118176 | 1.692679302411788 | 1.692679442090935 |
1.0 | 1.768775996025961 | 1.768775834423550 | 1.768775829933226 | 1.768775816461693 | 1.768775843403918 | 1.768775998311597 |
Table 15.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.025).
Table 15.
Comparison of Analytical and Approximate Solutions for HTM2 and Relevant Methods in Problem 2 (h = 0.025).
| Exact Solution | RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.077662301168311 | 1.077662297061071 | 1.077662296946963 | 1.077662296604634 | 1.768772168318756 | 1.077662301225877 |
0.2 | 1.155149409193027 | 1.155149400993944 | 1.155149400766157 | 1.155149400082781 | 2.520298931317081 | 1.155149409307948 |
0.3 | 1.232461630508842 | 1.232461618233270 | 1.232461617892230 | 1.232461616869088 | 3.254880571751630 | 1.232461630680901 |
0.4 | 1.309599271090915 | 1.309599254754162 | 1.309599254300294 | 1.309599252938663 | 3.972812879500018 | 1.309599271319889 |
0.5 | 1.386562636455415 | 1.386562616072772 | 1.386562615506501 | 1.386562613807653 | 4.674387207720501 | 1.386562636741100 |
0.6 | 1.463352031660152 | 1.463352007246861 | 1.463352006568610 | 1.463352004533817 | 5.359890528448672 | 1.463352032002334 |
0.7 | 1.539967761305115 | 1.539967732876376 | 1.539967732086569 | 1.539967729717097 | 6.029605487635397 | 1.539967761703577 |
0.8 | 1.616410129533037 | 1.616410097104022 | 1.616410096203079 | 1.616410093500192 | 6.683810459630230 | 1.616410129987570 |
0.9 | 1.692679440029992 | 1.692679403615832 | 1.692679402604174 | 1.692679399569134 | 7.322779601114496 | 1.692679440540384 |
1.0 | 1.768775996025961 | 1.768775955641741 | 1.768775954519786 | 1.768775951153851 | 7.946782904488222 | 1.768775996591993 |
Table 16.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.1).
Table 16.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.1).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.077662301168311 | 1.077662301205557 | 1.077662301209444 | 1.077662301201518 | 1.077662301195728 |
0.2 | 1.155149409193027 | 1.155149409267394 | 1.155149409275154 | 1.155149409259330 | 1.155149409247769 |
0.3 | 1.232461630508842 | 1.232461630620198 | 1.232461630631818 | 1.232461630608124 | 1.232461630590812 |
0.4 | 1.309599271090915 | 1.309599271239121 | 1.309599271254587 | 1.309599271223051 | 1.309599271200008 |
0.5 | 1.386562636455415 | 1.386562636640352 | 1.386562636659651 | 1.386562636620299 | 1.386562636591547 |
0.6 | 1.463352031660152 | 1.463352031881691 | 1.463352031904810 | 1.463352031857670 | 1.463352031823227 |
0.7 | 1.539967761305115 | 1.539967761563123 | 1.539967761590047 | 1.539967761535147 | 1.539967761495035 |
0.8 | 1.616410129533037 | 1.616410129827389 | 1.616410129858106 | 1.616410129795472 | 1.616410129749710 |
0.9 | 1.692679440029992 | 1.692679440360560 | 1.692679440395056 | 1.692679440324717 | 1.692679440273324 |
1.0 | 1.768775996025961 | 1.768775996392609 | 1.768775996430871 | 1.768775996352853 | 1.768775996295850 |
Table 17.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.05).
Table 17.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.05).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.077662301168311 | 1.077662301172961 | 1.077662301173447 | 1.077662301172457 | 1.077662301171734 |
0.2 | 1.155149409193027 | 1.155149409202316 | 1.155149409203285 | 1.155149409201309 | 1.155149409199866 |
0.3 | 1.232461630508842 | 1.232461630522752 | 1.232461630524203 | 1.232461630521245 | 1.232461630519083 |
0.4 | 1.309599271090915 | 1.309599271109421 | 1.309599271111352 | 1.309599271107414 | 1.309599271104537 |
0.5 | 1.386562636455415 | 1.386562636478511 | 1.386562636480920 | 1.386562636476007 | 1.386562636472416 |
0.6 | 1.463352031660152 | 1.463352031687821 | 1.463352031690708 | 1.463352031684822 | 1.463352031680521 |
0.7 | 1.539967761305115 | 1.539967761337337 | 1.539967761340699 | 1.539967761333844 | 1.539967761328835 |
0.8 | 1.616410129533037 | 1.616410129569800 | 1.616410129573635 | 1.616410129565815 | 1.616410129560100 |
0.9 | 1.692679440029992 | 1.692679440071280 | 1.692679440075588 | 1.692679440066805 | 1.692679440060387 |
1.0 | 1.768775996025961 | 1.768775996071750 | 1.768775996076527 | 1.768775996066786 | 1.768775996059668 |
Table 18.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.025).
Table 18.
Comparison of Analytical and Approximate Solutions for HTM3 and Relevant Methods in Problem 2 (h = 0.025).
| Exact Solution | Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0
|
0
|
0
|
0
|
0
|
0
|
0.1
| 1.077662301168311 | 1.077662301168891 | 1.077662301168951 | 1.077662301168828 | 1.077662301168737 |
0.2
| 1.155149409193027 | 1.155149409194189 | 1.155149409194310 | 1.155149409194063 | 1.155149409193883 |
0.3
| 1.232461630508842 | 1.232461630510583 | 1.232461630510764 | 1.232461630510395 | 1.232461630510124 |
0.4
| 1.309599271090915 | 1.309599271093224 | 1.309599271093465 | 1.309599271092973 | 1.309599271092613 |
0.5
| 1.386562636455415 | 1.386562636458300 | 1.386562636458600 | 1.386562636457987 | 1.386562636457538 |
0.6
| 1.463352031660152 | 1.463352031663611 | 1.463352031663971 | 1.463352031663236 | 1.463352031662698 |
0.7
| 1.539967761305115 | 1.539967761309141 | 1.539967761309561 | 1.539967761308705 | 1.539967761308079 |
0.8
| 1.616410129533037 | 1.616410129537632 | 1.616410129538111 | 1.616410129537134 | 1.616410129536420 |
0.9
| 1.692679440029992 | 1.692679440035155 | 1.692679440035693 | 1.692679440034596 | 1.692679440033793 |
1.0
| 1.768775996025961 | 1.768775996031681 | 1.768775996032277 | 1.768775996031060 | 1.768775996030170 |
Table 19.
Absolute errors for problem 2 using HTM2 and other methods for .
Table 19.
Absolute errors for problem 2 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 6.5796 | 6.7625 | 7.3111 | 6.2138 | 9.4731 |
0.2 | 1.3134 | 1.3500 | 1.4595 | 1.2404 | 1.8911 |
0.3 | 1.9665 | 2.0211 | 2.1851 | 1.8572 | 2.8313 |
0.4 | 2.6171 | 2.6898 | 2.9080 | 2.4716 | 3.7680 |
0.5 | 3.2652 | 3.3559 | 3.6282 | 3.0837 | 4.7012 |
0.6 | 3.9109 | 4.0196 | 4.3457 | 3.6935 | 5.6309 |
0.7 | 4.5541 | 4.6807 | 5.0605 | 4.3010 | 6.5571 |
0.8 | 5.1950 | 5.3394 | 5.7726 | 4.9062 | 7.4798 |
0.9 | 5.8334 | 5.9955 | 6.4819 | 5.5091 | 8.3990 |
1.0 | 6.4693 | 6.6492 | 7.1886 | 6.1097 | 9.3148 |
Table 20.
Absolute errors for problem 2 using HTM2 and other methods for .
Table 20.
Absolute errors for problem 2 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 1.6436 | 1.6892 | 1.8262 | 1.5522 | 2.3245 |
0.2 | 3.2810 | 3.3721 | 3.6456 | 3.0986 | 4.6404 |
0.3 | 4.9122 | 5.0487 | 5.4582 | 4.6392 | 6.9476 |
0.4 | 6.5373 | 6.7190 | 7.2640 | 6.1741 | 9.2460 |
0.5 | 8.1564 | 8.3830 | 9.0629 | 7.7031 | 1.1536 |
0.6 | 9.7693 | 1.0041 | 1.0855 | 9.2264 | 1.3817 |
0.7 | 1.1376 | 1.1692 | 1.2641 | 1.0744 | 1.6090 |
0.8 | 1.2977 | 1.3337 | 1.4419 | 1.2256 | 1.8354 |
0.9 | 1.4572 | 1.4976 | 1.6191 | 1.3762 | 2.0609 |
1.0 | 1.6160 | 1.6609 | 1.7956 | 1.5262 | 2.2856 |
Table 21.
Absolute errors for problem 2 using HTM2 and other methods for .
Table 21.
Absolute errors for problem 2 using HTM2 and other methods for .
| RK2 Method | Ralston’s Method | Heun’s Method | Midpoint Method | HTM2 Method |
---|
0 | 0 | 0 | 0 | 0 | 0 |
0.1 | 4.1072 | 4.2213 | 4.5637 | 3.8790 | 5.7565 |
0.2 | 8.1991 | 8.4269 | 9.1102 | 7.7435 | 1.1492 |
0.3 | 1.2276 | 1.2617 | 1.3640 | 1.1594 | 1.7206 |
0.4 | 1.6337 | 1.6791 | 1.8152 | 1.5429 | 2.2897 |
0.5 | 2.0383 | 2.0949 | 2.2648 | 1.9250 | 2.8569 |
0.6 | 2.4413 | 2.5092 | 2.7126 | 2.3057 | 3.4218 |
0.7 | 2.8429 | 2.9219 | 3.1588 | 2.6849 | 3.9846 |
0.8 | 3.2429 | 3.3330 | 3.6033 | 3.0627 | 4.5453 |
0.9 | 3.6414 | 3.7426 | 4.0461 | 3.4391 | 5.1039 |
1.0 | 4.0384 | 4.1506 | 4.4872 | 3.8140 | 5.6603 |
Table 22.
Absolute errors for problem 2 using HTM3 and other methods for .
Table 22.
Absolute errors for problem 2 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 3.7246 | 4.1133 | 3.3207 | 2.7416 |
0.2 | 7.4366 | 8.2127 | 6.6303 | 5.4741 |
0.3 | 1.1136 | 1.2298 | 9.9282 | 8.1970 |
0.4 | 1.4821 | 1.6367 | 1.3214 | 1.0909 |
0.5 | 1.8494 | 2.0424 | 1.6488 | 1.3613 |
0.6 | 2.2154 | 2.4466 | 1.9752 | 1.6308 |
0.7 | 2.5801 | 2.8493 | 2.3003 | 1.8992 |
0.8 | 2.9435 | 3.2507 | 2.6243 | 2.1667 |
0.9 | 3.3057 | 3.6506 | 2.9472 | 2.4333 |
1.0 | 3.6665 | 4.0491 | 3.2689 | 2.6989 |
Table 23.
Absolute errors for problem 2 using HTM3 and other methods for .
Table 23.
Absolute errors for problem 2 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 4.6501 | 5.1354 | 4.1457 | 3.4225 |
0.2 | 9.2889 | 1.0258 | 8.2821 | 6.8384 |
0.3 | 1.3910 | 1.5361 | 1.2403 | 1.0241 |
0.4 | 1.8506 | 2.0437 | 1.6499 | 1.3622 |
0.5 | 2.3096 | 2.5506 | 2.0592 | 1.7002 |
0.6 | 2.7670 | 3.0556 | 2.4671 | 2.0370 |
0.7 | 3.2222 | 3.5584 | 2.8729 | 2.3720 |
0.8 | 3.6763 | 4.0598 | 3.2778 | 2.7063 |
0.9 | 4.1288 | 4.5595 | 3.6813 | 3.0395 |
1.0 | 4.5789 | 5.0566 | 4.0826 | 3.3707 |
Table 24.
Absolute errors for problem 2 using HTM3 and other methods for .
Table 24.
Absolute errors for problem 2 using HTM3 and other methods for .
| Ralston’s Method | RK3 Method | Heun’s Method | HTM3 Method |
---|
0 | 0 | 0 | 0 | 0 |
0.1 | 5.7938 | 6.4006 | 5.1628 | 4.2590 |
0.2 | 1.1617 | 1.2828 | 1.0360 | 8.5564 |
0.3 | 1.7408 | 1.9220 | 1.5525 | 1.2824 |
0.4 | 2.3087 | 2.5497 | 2.0580 | 1.6982 |
0.5 | 2.8851 | 3.1858 | 2.5724 | 2.1231 |
0.6 | 3.4589 | 3.8193 | 3.0846 | 2.5466 |
0.7 | 4.0254 | 4.4454 | 3.5894 | 2.9632 |
0.8 | 4.5941 | 5.0736 | 4.0967 | 3.3825 |
0.9 | 5.1622 | 5.7003 | 4.6035 | 3.8011 |
1.0 | 5.7196 | 6.3162 | 5.0994 | 4.2095 |