Starlike Functions Associated with Secant Hyperbolic Function
Abstract
:1. Introduction
2. Preliminary Results
3. Starlikeness and Convexity
- 1.
- for
- 2.
- γ) for
- 3.
- whenever where
4. Inclusion Results
- 1.
- , for
- 2.
- , for
- 3.
- , for
5. Radius Problems
- 1.
- A function is in if and only if
- 2.
- The function if and only if
- 1.
- ,
- 2.
- ,
- 3.
- ,
- 4.
- ,
- 5.
- 6.
- 7.
- 1.
- and
- 2.
- and
6. Radius Problems for Ratios of Analytic Functions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ma, W.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceeding of Conference on Complex Analysis; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; International Press: Somerville, MA, USA, 1994; pp. 157–169. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef] [Green Version]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. 1996, 19, 101–105. [Google Scholar]
- Khatter, K.; Ravichandran, V.; Kumar, S.S. Starlike functions associated with exponential function and the lemniscate of Bernoulli. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2019, 113, 233–253. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. A subclass of starlike functions associated with left-half of the lemniscate of Bernoulli. Int. J. Math. 2014, 25, 1450090. [Google Scholar] [CrossRef]
- Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Math. 2016, 27, 923–939. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
- Masih, V.S.; Kanas, S. Subclasses of starlike and convex functions associated with the limaçon domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Yunus, Y.; Halim, S.A.; Akbarally, A.B. Subclass of starlike functions associated with a limaçon. In Proceedings of the AIP Conference 2018, Maharashtra, India, 5–6 July 2018; AIP Publishing: New York, NY, USA, 2018. [Google Scholar]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlike functions associated with cosine functions. Bull. Iran. Math. Soc. 2021, 47, 1513–1532. [Google Scholar] [CrossRef]
- Tang, H.; Srivastava, H.M.; Li, S.; Deng, G. Majorization results for subclasses of starlike functions based on the sine and cosine functions. Bull. Iran. Math. Soc. 2020, 46, 381–388. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Kargar, R.; Ebadian, A.; Sokół, J. On Booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 143–154. [Google Scholar] [CrossRef]
- Khan, N.; Khan, S.; Xin, Q.; Tchier, F.; Malik, S.N.; Javed, U. Some Applications of Analytic Functions Associated with q-Fractional Operator. Mathematics 2023, 11, 930. [Google Scholar] [CrossRef]
- Liu, D.; Din, M.U.; Raza, M.; Malik, S.N.; Tang, H. Convexity, Starlikeness, and Prestarlikeness of Wright Functions. Mathematics 2022, 10, 3858. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Afis, S.; Cătaş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Orhan, H.; ÇaĞLar, M.; Cotirla, L.-I. Third Hankel Determinant for a Subfamily of Holomorphic Functions Related with Lemniscate of Bernoulli. Mathematics 2023, 11, 1147. [Google Scholar] [CrossRef]
- Deniz, E.; KazimoĞlu, S.; ÇaĞlar, M. Radii of Starlikeness and Convexity of the Derivatives of Bessel Function. Ukr. Math. J. 2022, 73, 1686–1711. [Google Scholar] [CrossRef]
- Deniz, E.; KazimoĞlu, S.; ÇaĞlar, M. Radii of Uniform Convexity of Lommel and Struve Functions. Bull. Iran. Math. Soc. 2021, 47, 1533–1557. [Google Scholar] [CrossRef]
- Riaz, A.; Raza, M.; Binyamin, M.A.; Saliu, A. The second and third Hankel determinants for starlike and convex functions associated with Three-Leaf function. Heliyon 2023, 9, e12748. [Google Scholar] [CrossRef]
- Sokół, J. On starlike functions connected with Fibonacci numbers. Folia Scient. Univ. Tech. Resoviensis 1999, 175, 111–116. [Google Scholar]
- Dziok, J.; Raina, R.K.; Sokół, J. Certain results for a class of convex functions related to a shell-like curve connected with Fibonacci numbers. Comput. Math. Appl. 2011, 61, 2605–2613. [Google Scholar] [CrossRef] [Green Version]
- Dziok, J.; Raina, R.K.; Sokół, J. On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers. Math. Comput. Model. 2013, 57, 1203–1211. [Google Scholar] [CrossRef]
- Deniz, E. Sharp coefficient bounds for starlike functions associated with generalized telephone numbers. Bull. Malays. Math. Sci. Soc. 2021, 44, 1525–1542. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. Certain subclasses of analytic functions associated with generalized Telephone numbers. Symmetry 2022, 14, 1053. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, S.; Kumar, V.; Ravichandran, V.; Srivastava, H.M. Starlike functions related to the Bell numbers. Symmetry 2019, 11, 219. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Cho, N.E.; Ravichandran, V.; Srivastava, H.M. Sharp coefficient bounds for starlike functions associated with the Bell numbers. Math. Slovaca 2019, 69, 1053–1064. [Google Scholar] [CrossRef]
- Raza, M.; Binyamin, M.A.; Riaz, A. A study of convex and related functions in the perspective of geometric function theory. In Inequalities with Generalized Convex Functions and Applications; Awan, M.U., Cristescu, G., Eds.; Springer: Berlin, Germany, 2023; To be published. [Google Scholar]
- Lehmer, E. On congruences involving Bernouli numbers and the quotients of Fermat and Wilson. Ann. Math. 1938, 39, 350–360. [Google Scholar] [CrossRef]
- Malenfant, J. Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers. arXiv 2011, arXiv:1103.1585. [Google Scholar]
- Yakubovich, S. Certain identities, connection and explicit formulas for the Bernoulli and Euler numbers and the Riemann zeta-values. Analysis 2015, 35, 59–71. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 10th ed.; Applied Mathematics Series; National Bureau of Standards: Washington, DC, USA, 1972; Volume 55. [Google Scholar]
- Ali, R.M.; Jain, R.N.K.; Ravichandran, V. Radii of starlikeness associated with the lemniscate of Bernoulli and the left-half plane. Appl. Math. Comp. 2012, 218, 6557–6565. [Google Scholar] [CrossRef] [Green Version]
- Shah, G.M. On the univalence of some analytic functions. Pac. J. Math. 1972, 43, 239–250. [Google Scholar]
- Ravichandran, V.; Ronning, F.; Shanmugam, T.N. Radius of convexity and radius of starlikeness for some classes of analytic functions. Complex Var. Elli. Equ. 1997, 33, 265–280. [Google Scholar]
- Nehari, Z. Conformal Mapping; McGraw-Hill Inc.: New York, NY, USA, 1952. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. https://doi.org/10.3390/sym15030737
Bano K, Raza M, Xin Q, Tchier F, Malik SN. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry. 2023; 15(3):737. https://doi.org/10.3390/sym15030737
Chicago/Turabian StyleBano, Khadija, Mohsan Raza, Qin Xin, Fairouz Tchier, and Sarfraz Nawaz Malik. 2023. "Starlike Functions Associated with Secant Hyperbolic Function" Symmetry 15, no. 3: 737. https://doi.org/10.3390/sym15030737
APA StyleBano, K., Raza, M., Xin, Q., Tchier, F., & Malik, S. N. (2023). Starlike Functions Associated with Secant Hyperbolic Function. Symmetry, 15(3), 737. https://doi.org/10.3390/sym15030737