Radius Results for Certain Strongly Starlike Functions
Abstract
:1. Introduction and Preliminaries
2. Main Results
- (a)
- in the disc
- (b)
- in the disc
- (c)
- in the disc
- (d)
- in the disc , where is the smallest positive root of the equation
- (e)
- in the discAll these radii cannot be improved since the functionplays the role of an extremal function.
- (a)
- for to be in , we must have
- (b)
- if
- (c)
- ifSince , we see that condition (8) will be satisfied ifHence, . To establish the sharpness, we consider at , and haveThus,
- (d)
- From (4), a computation givesTherefore, ifThus, we see that condition (9) will be satisfied ifSo, the functionThis shows that the radius is sharp.
- (e)
- ifIt is easy to see that the inequality
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stankiewicz, J. Quelques problèmes extrèmaux dans les classes des fonctions α-angulairement ètoilèes. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1966, 20, 59–75. [Google Scholar]
- Stankiewicz, J. On a family of starlike functions. Ann. Univ. Mariae Curie-Skłodowska Sect. A 1968, 22–24, 175–181. [Google Scholar]
- Brannan, D.A.; Kirwan, W.E. On some classes of bounded univalent functions. J. Lond. Math. Soc. 1969, 2, 431–443. [Google Scholar] [CrossRef]
- Ma, W.; Minda, D. An internal geometric characterization of strongly starlike functions. Ann. Univ.Mariae Curie Skłodowska Sect. A 1991, 20, 89–97. [Google Scholar]
- Lecko, A. Some Methods in the Theory of Univalent Functions; Oficyna Wydawnicza Poltechniki Rzeszowskiej: Rzeszów, Poland, 2005. [Google Scholar]
- Lecko, A. Strongly starlike and spirallike functions. Ann. Polon. Math. 2005, 85, 165–192. [Google Scholar] [CrossRef]
- Sugawa, T. A self-duality of strong starlikeness. Kodai Math. J. 2005, 28, 382–389. [Google Scholar] [CrossRef]
- Mocanu, P.T. Some starlikeness conditions for analytic functions. Rev. Roumanie Math. Pures Appl. 1988, 33, 117–124. [Google Scholar]
- Mocanu, P.T. Two simple conditions for starlikeness. Mathematica 1992, 34, 175–181. [Google Scholar]
- Nunokawa, M. On the order of strongly starlikeness of strongly convex functions. Proc. Jpn. Acad. Ser. A 1993, 69, 234–237. [Google Scholar] [CrossRef]
- Obradović, M. Simple sufficient conditions for starlikeness. Mat. Vesnik. 1997, 49, 241–244. [Google Scholar]
- Tuneski, N. On some simple sufficient conditions for univalence. Math. Bohem. 2001, 126, 229–236. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Sim, Y.J.; Kwon, O.S.; Cho, N.E.; Srivastava, H.M. Some sets of sufficient conditions for Carathéodory functions. J. Comput. Anal. Appl. 2016, 21, 1243–1254. [Google Scholar]
- Nunokawa, M.; Kwon, O.S.; Sim, Y.J.; Cho, N.E. Sufficient conditions for Carathéodory functions. Filomat 2018, 32, 1097–1106. [Google Scholar] [CrossRef]
- Nunokawa, M.; Sokół, J. New conditions for starlikeness and strongly starlikeness of order alpha. Houst. J. Math. 2017, 43, 333–344. [Google Scholar]
- Nunokawa, M.; Sokół, J. Some applications of first-order differential subordinations. Math. Slovaca 2017, 67, 939–944. [Google Scholar] [CrossRef]
- Cho, N.E. Oh Sang Kwon, and Young Jae Sim. Differential inequalities for spirallike and strongly starlike functions. Adv. Differ. Equ. 2021, 1, 1–12. [Google Scholar]
- Kowalczyk, B.; Lecko, A. The second Hankel determinant of the logarithmic coefficients of strongly starlike and strongly convex functions. Rev. Real Acad. Cienc. Fis. Nat. Ser. A Mat. 2023, 117, 91. [Google Scholar] [CrossRef]
- Seoudy, T.; Aouf, M.K. Fekete-Szegö Problem for Certain Subclass of Analytic Functions with Complex Order Defined by q-Analogue of Ruscheweyh Operator. Constr. Math. Anal. 2020, 3, 36–44. [Google Scholar] [CrossRef]
- Aouf, M.K.; Seoudy, T. Certain Class of Bi-Bazilevic Functions with Bounded Boundary Rotation Involving Salăgeăn Operator. Constr. Math. Anal. 2020, 3, 139–149. [Google Scholar] [CrossRef]
- Akgül, A.; Cotîrlă, L.-I. Coefficient Estimates for a Family of Starlike Functions Endowed with Quasi Subordination on Conic Domain. Symmetry 2022, 14, 582. [Google Scholar] [CrossRef]
- Cotîrlă, L.-I.; Kupán, P.A.; Szász, R. New Results about Radius of Convexity and Uniform Convexity of Bessel Functions. Axioms 2022, 11, 380. [Google Scholar] [CrossRef]
- Cotîrlǎ, L.-I.; Murugusundaramoorthy, G. Starlike Functions Based on Ruscheweyh q-Differential Operator defined in Janowski Domain. Fractal Fract. 2023, 7, 148. [Google Scholar] [CrossRef]
- Shanmugam, T.N. Convolution and differential subordination. Internat. J. Math. Math. Sci. 1989, 12, 333–340. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. Conf. Proc. Lect. Notes Anal. 1992, 1, 157–169. [Google Scholar]
- Sokół, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101–105. [Google Scholar]
- Masih, V.S.; Kanas, S. Subclasses of Starlike and Convex Functions Associated with the Limaçon Domain. Symmetry 2020, 12, 942. [Google Scholar] [CrossRef]
- Sokół, J. On some subclass of strongly starlike functions. Demonstr. Math. 1998, 31, 81–86. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wisniowska, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–658. [Google Scholar]
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Liu, L.; Liu, J.L. Properties of Certain Multivalent Analytic Functions Associated with the Lemniscate of Bernoulli. Axioms 2021, 10, 160. [Google Scholar] [CrossRef]
- Masih, V.S.; Ebadian, A.; Sokół, J. On strongly starlike functions related to the Bernoulli lemniscate. Tamkang J. Math. 2022, 53, 187–199. [Google Scholar] [CrossRef]
- Al-Shbeil, I.; Saliu, A.; Cătaş, A.; Malik, S.N.; Oladejo, S.O. Some Geometrical Results Associated with Secant Hyperbolic Functions. Mathematics 2022, 10, 2697. [Google Scholar] [CrossRef]
- Kargar, R.; Trojnar-Spelina, L. Starlike functions associated with the generalized Koebe function. Anal. Math. Phys. 2021, 11, 146. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. Some results for the family of univalent functions related with limaçon domain. AIMS Math. 2021, 6, 3410–3431. [Google Scholar] [CrossRef]
- Saliu, A.; Jabeen, K.; Al-shbeil, I.; Oladejo, S.O.; Cătaş, A. Radius and differential subordination results for starlikeness associated with limaçon class. J. Funct. Spaces 2022, 15, 8264693. [Google Scholar] [CrossRef]
- Murugusundaramoorthy, G.; Vijaya, K. Certain Subclasses of Analytic Functions Associated with Generalized Telephone Numbers. Symmetry 2022, 14, 1053. [Google Scholar] [CrossRef]
- Malik, S.N.; Raza, M.; Xin, Q.; Sokół, J.; Manzoor, R.; Zainab, S. On Convex Functions Associated with Symmetric Cardioid Domain. Symmetry 2021, 13, 2321. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M.; Xin, Q.; Tchier, F.; Malik, S.N. Starlike Functions Associated with Secant Hyperbolic Function. Symmetry 2023, 15, 737. [Google Scholar] [CrossRef]
- Sokół, J. Radius problems in the class SL*. Appl. Math. Comput. 2009, 214, 569–573. [Google Scholar] [CrossRef]
- Cang, Y.-L.; Liu, J.-L. Radius of convexity for certain analytic functions associated with the lemniscate of Bernoulli. Expo. Math. 2015, 33, 387–391. [Google Scholar] [CrossRef]
- Bano, K.; Raza, M. Starlikness associated with limacon. Filomat 2023, 37, 851–862. [Google Scholar]
- Pinchuk, B. A variational method for functions of bounded boundary rotation. Trans. Am. Math. Soc. 1969, 138, 107–113. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Co.: Tampa, FL, USA, 1983; Volumes I and II. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saliu, A.; Jabeen, K.; Xin, Q.; Tchier, F.; Malik, S.N. Radius Results for Certain Strongly Starlike Functions. Symmetry 2023, 15, 1124. https://doi.org/10.3390/sym15051124
Saliu A, Jabeen K, Xin Q, Tchier F, Malik SN. Radius Results for Certain Strongly Starlike Functions. Symmetry. 2023; 15(5):1124. https://doi.org/10.3390/sym15051124
Chicago/Turabian StyleSaliu, Afis, Kanwal Jabeen, Qin Xin, Fairouz Tchier, and Sarfraz Nawaz Malik. 2023. "Radius Results for Certain Strongly Starlike Functions" Symmetry 15, no. 5: 1124. https://doi.org/10.3390/sym15051124
APA StyleSaliu, A., Jabeen, K., Xin, Q., Tchier, F., & Malik, S. N. (2023). Radius Results for Certain Strongly Starlike Functions. Symmetry, 15(5), 1124. https://doi.org/10.3390/sym15051124