Grid Harmonics Suppression for Three Phase Dual-Frequency Grid-Connected Inverter Based on Feedforward Compensation
Abstract
:1. Introduction
- The feedforward compensation method is used to control the AHEU to generate the output current which is symmetric with the current ripple of the PIU. Compared with an active power filter, it avoids extracting harmonics as current reference, which reduces the requirements for sampling accuracy and current control bandwidth.
- A parameter design method for switching frequency and filter inductance is proposed considering system efficiency, and the influence of switching frequency and inductance changes on power loss is discussed. The experimental results verify that the proposed inverter has a significant improvement in efficiency.
- A three-phase dual-frequency GCI topology is presented which consists of PIU and AHEU. The PIU operates at a low pulse ratio to reduce the switching loss, and electric energy is transmitted to the power grid by PIU. The AHEU operates at high switching frequency to improve power quality. Furthermore, the stability of the system under a weak grid is analyzed; the proposed inverter can address the stability issue of the LCL filter in low pulse-ratio VSIs with high power in weak grid.
2. Proposed Inverter’s Topology and Principle of Operation
2.1. Proposed Topology
2.2. Proposed Inverter’s Principle of Harmonic Elimination
3. Proposed Inverter’s Parameter Design
3.1. Design of the PIU Filter Inductance LP
3.2. Design of the AHEU Filter Inductance LA
3.3. Design of the DC-Link Voltage of the AHEU
3.4. Design of the Switching Frequency
4. Stability Analysis of Proposed Inverter
5. Proposed Inverter’s Control Scheme
6. Experiment Results
6.1. Suppression Effect of Current Ripple
6.2. Performance of the Proposed Inverter under Dynamic Changing Load Conditions
6.3. Performance of the Proposed Inverter under a Weak Grid
6.4. Circulating Current Analysis
6.5. Efficiency Analysis
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blaabjerg, F.; Dan, M.I.; Yang, Y.; Wang, H. Renewable Energy Systems: Technology Overview and Perspectives; Renewable Energy Devices and Systems with Simulations in MATLAB® and ANSYS®; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Wang, L.; Shi, Y.; Shi, Y.; Xie, R.; Li, H. Ground Leakage Current Analysis and Suppression in a 60-kW 5-Level T-Type Transformerless SiC PV Inverter. IEEE Trans. Power Electron. 2018, 33, 1271–1283. [Google Scholar] [CrossRef]
- Vosoughi, N.; Hosseini, S.H.; Sabahi, M. A New Single-Phase Transformerless Grid-Connected Inverter With Boosting Ability and Common Ground Feature. IEEE Trans. Ind. Electron. 2020, 67, 9313–9325. [Google Scholar] [CrossRef]
- Jahan, H.K. A New Transformerless Inverter With Leakage Current Limiting and Voltage Boosting Capabilities for Grid-Connected PV Applications. IEEE Trans. Ind. Electron. 2020, 67, 10542–10551. [Google Scholar] [CrossRef]
- Bhunia, M.; Subudhi, B. A self-tuning adaptive control scheme for a grid-connected three-phase PV system. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 5709–5716. [Google Scholar] [CrossRef]
- Chen, M.; Xu, D.; Zhang, T.; Shi, K.; He, G.; Rajashekara, K. A Novel DC Current Injection Suppression Method for Three-Phase Grid-Connected Inverter Without the Isolation Transformer. IEEE Trans. Ind. Electron. 2018, 65, 8656–8666. [Google Scholar] [CrossRef]
- Cho, B.-G.; Sul, S.-K. LCL filter design for grid-connected voltage-source converters in high power systems. In Proceedings of the 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, USA, 15–20 September 2012; pp. 1548–1555. [Google Scholar]
- Yao, W.; Yang, Y.; Zhang, X.; Blaabjerg, F.; Loh, P.C. Design and analysis of robust active damping for LCL filters using digital notch filters. IEEE Trans. Power Electron. 2016, 32, 2360–2375. [Google Scholar] [CrossRef] [Green Version]
- Guzman, R.; de Vicuña, L.G.; Castilla, M.; Miret, J.; de la Hoz, J. Variable structure control for three-phase LCL-filtered inverters using a reduced converter model. IEEE Trans. Ind. Electron. 2017, 65, 5–15. [Google Scholar] [CrossRef]
- Fantino, R.A.; Busada, C.A.; Solsona, J.A. Optimum PR control applied to LCL filters with low resonance frequency. IEEE Trans. Power Electron. 2017, 33, 793–801. [Google Scholar] [CrossRef]
- Jayalath, S.; Hanif, M. Generalized LCL-Filter Design Algorithm for Grid-Connected Voltage-Source Inverter. IEEE Trans. Ind. Electron. 2017, 64, 1905–1915. [Google Scholar] [CrossRef]
- Cha, H.; Vu, T.K. Comparative analysis of low-pass output filter for single-phase grid-connected Photovoltaic inverter. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010; pp. 1659–1665. [Google Scholar]
- Jiao, Y.; Lee, F.C. LCL filter design and inductor current ripple analysis for a three-level NPC grid interface converter. IEEE Trans. Power Electron. 2014, 30, 4659–4668. [Google Scholar] [CrossRef]
- Beres, R.N.; Wang, X.; Blaabjerg, F.; Liserre, M.; Bak, C.L. Optimal design of high-order passive-damped filters for grid-connected applications. IEEE Trans. Power Electron. 2015, 31, 2083–2098. [Google Scholar] [CrossRef] [Green Version]
- Pan, D.; Ruan, X.; Wang, X.; Yu, H.; Xing, Z. Analysis and design of current control schemes for LCL-type grid-connected inverter based on a general mathematical model. IEEE Trans. Power Electron. 2016, 32, 4395–4410. [Google Scholar] [CrossRef]
- Han, Y.; Yang, M.; Li, H.; Yang, P.; Xu, L.; Coelho, E.A.A.; Guerrero, J.M. Modeling and Stability Analysis of LCL-Type Grid-Connected Inverters: A Comprehensive Overview. IEEE Access 2019, 7, 114975–115001. [Google Scholar] [CrossRef]
- Wang, K.; Yuan, X. Stability Analysis of the Virtual Inductance for LCL Filtered Droop-Controlled Grid-Connected Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 2685–2698. [Google Scholar] [CrossRef]
- Dannehl, J.; Liserre, M.; Fuchs, F.W. Filter-based active damping of voltage source converters with LCL filter. IEEE Trans. Ind. Electron. 2010, 58, 3623–3633. [Google Scholar] [CrossRef]
- Bai, H.; Wang, X.; Loh, P.C.; Blaabjerg, F. An active trap filter for switching harmonic attenuation of low-pulse-ratio inverters. IEEE Trans. Power Electron. 2017, 32, 9078–9092. [Google Scholar] [CrossRef]
- Rockhill, A.; Liserre, M.; Teodorescu, R.; Rodriguez, P. Grid-filter design for a multimegawatt medium-voltage voltage-source inverter. IEEE Trans. Ind. Electron. 2010, 58, 1205–1217. [Google Scholar] [CrossRef] [Green Version]
- Liserre, M.; Blaabjerg, F.; Hansen, S. Design and control of an LCL-filter-based three-phase active rectifier. IEEE Trans. Ind. Appl. 2005, 41, 1281–1291. [Google Scholar] [CrossRef]
- Pena-Alzola, R.; Liserre, M.; Blaabjerg, F.; Sebastián, R.; Dannehl, J.; Fuchs, F.W. Analysis of the passive damping losses in LCL-filter-based grid converters. IEEE Trans. Power Electron. 2012, 28, 2642–2646. [Google Scholar] [CrossRef] [Green Version]
- Beres, R.N.; Wang, X.; Liserre, M.; Blaabjerg, F.; Bak, C.L. A review of passive power filters for three-phase grid-connected voltage-source converters. IEEE J. Emerg. Sel. Top. Power Electron. 2015, 4, 54–69. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Shah, C.; Chen, T.; Teichrib, J.; De Doncker, R.W. Virtual damping control design of three-phase grid-tied PV inverters for passivity enhancement. IEEE Trans. Power Electron. 2020, 36, 6251–6264. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Zhang, P.; Liu, S. Control scheme and performance analysis of dual-frequency single-phase grid-connected inverter interfaced with weak and distorted grids. IEEE Access 2020, 8, 178639–178650. [Google Scholar] [CrossRef]
- Yang, L.; He, X.; Chang, A.; Liu, S. Analysis and design of L+ LCL-filtered dual-frequency single-phase grid-connected inverter. IET Power Electron. 2020, 13, 1416–1425. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, P.; Liu, S. Research on Topology and Control Method of Transformer-Free Dual-Frequency Grid-Connected Inverter. IEEE Trans. Power Electron. 2021, 36, 12596–12607. [Google Scholar] [CrossRef]
- Buła, D.; Grabowski, D.; Maciążek, M. A review on optimization of active power filter placement and sizing methods. Energies 2022, 15, 1175. [Google Scholar] [CrossRef]
- Ren, B.; Sun, X.; Yu, M.; Liu, J.; Zhang, Q. Circulating current analysis and the improved d–σ digital control strategy for multiparalleled three-level T-type grid-connected inverters. IEEE Trans. Ind. Electron. 2019, 67, 2810–2821. [Google Scholar] [CrossRef]
- Ravanji, M.H.; Ashtiani, N.A.; Parniani, M.; Mokhtari, H. Modeling and control of zero-sequence circulating current in parallel converters with space vector modulation. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 5, 363–377. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Wang, X.; Wang, G.; Chen, Z.; Xu, D. A coordinate control strategy for circulating current suppression in multiparalleled three-phase inverters. IEEE Trans. Ind. Electron. 2016, 64, 838–847. [Google Scholar] [CrossRef]
- Cai, Y.; He, Y.; Zhou, H.; Liu, J. Design method of LCL filter for grid-connected inverter based on particle swarm optimization and screening method. IEEE Trans. Power Electron. 2021, 36, 10097–10113. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Wang, X.D.; Zhou, K.; Shao, X.; Liu, J.F. Chaotic ant colony algorithm-based frequency-optimized random switching frequency SVPWM control strategy. J. Power Electron. 2023. [Google Scholar] [CrossRef]
- Wang, C.; Zeng, W.; Wang, Y.; Dai, Q.; Wang, Y.; Yang, X. SVPWM Strategy with Minimum Common-mode Voltage for Multilevel Converter Combining the Concept of the Nearest Level. IEEE Trans. Power Electron. 2023, 38, 9933–9943. [Google Scholar] [CrossRef]
- Yao, H.; Yan, Y.; Shi, T.; Zhang, G.; Wang, Z.; Xia, C. A novel SVPWM scheme for field-oriented vector-controlled PMSM drive system fed by cascaded H-bridge inverter. IEEE Trans. Power Electron. 2021, 36, 8988–9000. [Google Scholar] [CrossRef]
- Jahan, S.; Biswas, S.P.; Haq, S.; Islam, M.R.; Mahmud, M.P.; Kouzani, A.Z. An advanced control scheme for voltage source inverter based grid-tied PV systems. IEEE Trans. Appl. Supercond. 2021, 31, 1–5. [Google Scholar] [CrossRef]
- Quan, X. Improved dynamic response design for proportional resonant control applied to three-phase grid-forming inverter. IEEE Trans. Ind. Electron. 2020, 68, 9919–9930. [Google Scholar] [CrossRef]
- Gupta, A.K.; Agrawal, H.; Agarwal, V. A novel three-phase transformerless H-8 topology with reduced leakage current for grid-tied solar PV applications. IEEE Trans. Ind. Appl. 2019, 55, 1765–1774. [Google Scholar] [CrossRef]
Parameters | Power Inverter Unit (PIU) | Auxiliary Harmonic Elimination Unit (AHEU) |
---|---|---|
Switching frequency | 2.5 kHz | 60 kHz |
Dc-link voltage | 700 V | 700 V |
Filter inductance | 4.8 mH | 0.8 mH |
Output power | 10 kW | - |
Parameters | Proposed GCI | Traditional GCI | |
---|---|---|---|
PIU | AHEU | ||
Switching loss | 59 W | 3 W | 59 W |
Conduction loss | 55 W | - | 55 W |
Copper loss of the inductor | 279 W | 1 W | 383 W |
Total power loss | 397 W | 497 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Ma, D.; Yang, L.; Liu, S.; Tong, C.; Zhao, Y. Grid Harmonics Suppression for Three Phase Dual-Frequency Grid-Connected Inverter Based on Feedforward Compensation. Symmetry 2023, 15, 1517. https://doi.org/10.3390/sym15081517
Chen Z, Ma D, Yang L, Liu S, Tong C, Zhao Y. Grid Harmonics Suppression for Three Phase Dual-Frequency Grid-Connected Inverter Based on Feedforward Compensation. Symmetry. 2023; 15(8):1517. https://doi.org/10.3390/sym15081517
Chicago/Turabian StyleChen, Zhigang, Dongkai Ma, Liyong Yang, Shuo Liu, Chaonan Tong, and Yifan Zhao. 2023. "Grid Harmonics Suppression for Three Phase Dual-Frequency Grid-Connected Inverter Based on Feedforward Compensation" Symmetry 15, no. 8: 1517. https://doi.org/10.3390/sym15081517
APA StyleChen, Z., Ma, D., Yang, L., Liu, S., Tong, C., & Zhao, Y. (2023). Grid Harmonics Suppression for Three Phase Dual-Frequency Grid-Connected Inverter Based on Feedforward Compensation. Symmetry, 15(8), 1517. https://doi.org/10.3390/sym15081517