Artificial Neural Network Solution for a Fractional-Order Human Skull Model Using a Hybrid Cuckoo Search Algorithm
Abstract
:1. Introduction
Our Contribution
- To the best of our knowledge, the proposed problem is, for the first time, transformed into a fractional order by using the Riemann–Liouville definition of fractional-order derivatives;
- A new optimal approach has been designed to approximate the solution to the transformed equations;
- We investigated the impacts of radial distance on the dynamics of the temperature curve for various fractional-order values (, ), for which the results are displayed through graphs and tables and were validated against the available literature [40].
2. The Proposed Methodology
2.1. Fitness Function
2.2. Cuckoo Search (CS) Technique
- Each cuckoo bird lays a single egg in the nest of its host;
- Those nests containing eggs of superior quality will be passed on to the next generation;
- The number of hosts’ nests is set, and the host bird has a specific chance of discovering an alien egg.
2.3. Biogeography-Based Optimization
2.4. Hybrid Cuckoo Search
The Methodology of Heterogeneous CS
3. Results and Discussion
3.1. Case Study 1
3.2. Case Study 2
3.3. Case Study 3
3.4. Case Study 4
4. Conclusions
- The proposed problem was tackled by using the Riemann-Liouville definition of fractional-order derivatives for briefly analyzing the transfer of heat at the integer and non-integer points;
- The suggested fractional-order graphs that explain the parameters () provide a more accurate representation of the distribution of temperature within the human skull;
- A new type of BHCS algorithm was applied to reduce the norm for the fitness function;
- On the basis of the error, we observed that the case obtained extraordinary results that beat the integer order: ;
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreri, F.; Curcio, G.; Pasqualetti, P.; De Gennaro, L.; Fini, R.; Rossini, P.M. Mobile phone emissions and human brain excitability. Ann. Neurol. Off. J. Am. Neurol. Assoc. Child Neurol. Soc. 2006, 60, 188–196. [Google Scholar] [CrossRef] [PubMed]
- Hossmann, K.A.; Hermann, D. Effects of electromagnetic radiation of mobile phones on the central nervous system. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2003, 24, 49–62. [Google Scholar] [CrossRef] [PubMed]
- Keetley, V.; Wood, A.W.; Spong, J.; Stough, C. Neuropsychological sequelae of digital mobile phone exposure in humans. Neuropsychologia 2006, 44, 1843–1848. [Google Scholar] [CrossRef] [PubMed]
- Bernardi, P.; Cavagnaro, M.; Pisa, S.; Piuzzi, E. Specific absorption rate and temperature increases in the head of a cellular-phone user. IEEE Trans. Microw. Theory Tech. 2000, 48, 1118–1126. [Google Scholar] [CrossRef]
- Sengupta, S.; Guha, A. The fluid dynamics of symmetry and momentum transfer in microchannels within co-rotating discs with discrete multiple inflows. Phys. Fluids 2017, 29, 093604. [Google Scholar] [CrossRef]
- Ratajczak, M.; Ptak, M.; Kwiatkowski, A.; Kubicki, K.; Fernandes, F.A.; Wilhelm, J.; Dymek, M.; Sawicki, M.; Żółkiewski, S. Symmetry of the Human Head—Are Symmetrical Models More Applicable in Numerical Analysis? Symmetry 2021, 13, 1252. [Google Scholar] [CrossRef]
- Flesch, U. The distribution of heat sources in the human head: A theoretical consideration. J. Theor. Biol. 1975, 54, 285–287. [Google Scholar] [CrossRef]
- Gray, B. The distribution of heat sources in the human head—Theoretical considerations. J. Theor. Biol. 1980, 82, 473–476. [Google Scholar] [CrossRef]
- Anderson, N.; Arthurs, A. Complementary extremum principles for a nonlinear model of heat conduction in the human head. Bull. Math. Biol. 1981, 43, 341–346. [Google Scholar] [CrossRef]
- Makinde, O.D. Non-perturbative solutions of a nonlinear heat conduction model of the human head. Sci. Res. Essays 2010, 5, 529–532. [Google Scholar]
- Raja, M.A.Z.; Umar, M.; Sabir, Z.; Khan, J.A.; Baleanu, D. A new stochastic computing paradigm for the dynamics of nonlinear singular heat conduction model of the human head. Eur. Phys. J. Plus 2018, 133, 364. [Google Scholar] [CrossRef]
- Abdelhakem, M.; Youssri, Y. Two spectral Legendre’s derivative algorithms for Lane-Emden, Bratu equations, and singular perturbed problems. Appl. Numer. Math. 2021, 169, 243–255. [Google Scholar] [CrossRef]
- Youssri, Y.; Abd-Elhameed, W.; Doha, E. Ultraspherical wavelets method for solving Lane–Emden type equations. Rom. J. Phys 2015, 60, 1298–1314. [Google Scholar]
- Abd-Elhameed, W.M.; Youssri, Y.; Doha, E.H. New solutions for singular Lane-Emden equations arising in astrophysics based on shifted ultraspherical operational matrices of derivatives. Comput. Methods Differ. Equ. 2014, 2, 171–185. [Google Scholar]
- Doha, E.; Abd-Elhameed, W.; Youssri, Y. Second kind Chebyshev operational matrix algorithm for solving differential equations of Lane–Emden type. New Astron. 2013, 23, 113–117. [Google Scholar] [CrossRef]
- Odibat, Z.; Baleanu, D. Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives. Appl. Numer. Math. 2020, 156, 94–105. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. A new definition of fractional derivative without singular kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Podlubny, I. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng 1999, 198, 340. [Google Scholar]
- Aleksandrovich, K.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Wang, K.J. A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. Plus 2020, 135, 871. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Kumar, A. A new technique to solve generalized Caputo type fractional differential equations with the example of computer virus model. J. Math. Ext. 2021, 15. [Google Scholar] [CrossRef]
- Odibat, Z.; Erturk, V.S.; Kumar, P.; Govindaraj, V. Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme. Phys. Scr. 2021, 96, 125213. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S. Environmental persistence influences infection dynamics for a butterfly pathogen via new generalised Caputo type fractional derivative. Chaos Solitons Fractals 2021, 144, 110672. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Banerjee, R.; Yavuz, M.; Govindaraj, V. Fractional modeling of plankton-oxygen dynamics under climate change by the application of a recent numerical algorithm. Phys. Scr. 2021, 96, 124044. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Murillo-Arcila, M. A complex fractional mathematical modeling for the love story of Layla and Majnun. Chaos Solitons Fractals 2021, 150, 111091. [Google Scholar] [CrossRef]
- Kumar, P.; Govindaraj, V.; Erturk, V.S.; Abdellattif, M.H. A study on the dynamics of alkali–silica chemical reaction by using Caputo fractional derivative. Pramana 2022, 96, 128. [Google Scholar] [CrossRef]
- Kumar, P.; Govindaraj, V.; Erturk, V.S. A novel mathematical model to describe the transmission dynamics of tooth cavity in the human population. Chaos Solitons Fractals 2022, 161, 112370. [Google Scholar] [CrossRef]
- Nabi, K.N.; Abboubakar, H.; Kumar, P. Forecasting of COVID-19 pandemic: From integer derivatives to fractional derivatives. Chaos Solitons Fractals 2020, 141, 110283. [Google Scholar] [CrossRef]
- Nisar, K.S.; Ahmad, S.; Ullah, A.; Shah, K.; Alrabaiah, H.; Arfan, M. Mathematical analysis of SIRD model of COVID-19 with Caputo fractional derivative based on real data. Results Phys. 2021, 21, 103772. [Google Scholar] [CrossRef]
- Özköse, F.; Yavuz, M.; Şenel, M.T.; Habbireeh, R. Fractional order modelling of omicron SARS-CoV-2 variant containing heart attack effect using real data from the United Kingdom. Chaos Solitons Fractals 2022, 157, 111954. [Google Scholar] [CrossRef]
- Erturk, V.; Godwe, E.; Baleanu, D.; Kumar, P.; Asad, J.; Jajarmi, A. Novel fractional-order Lagrangian to describe motion of beam on nanowire. Acta Phys. Pol. A 2021, 140, 265–272. [Google Scholar] [CrossRef]
- Yavuz, M.; Sene, N.; Yıldız, M. Analysis of the influences of parameters in the fractional second-grade fluid dynamics. Mathematics 2022, 10, 1125. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math. Model. Numer. Simul. Appl. 2021, 1, 11–23. [Google Scholar] [CrossRef]
- Yavuz, M. European option pricing models described by fractional operators with classical and generalized Mittag-Leffler kernels. Numer. Methods Partial. Differ. Equ. 2022, 38, 434–456. [Google Scholar]
- Avci, D.; Yavuz, M.; Ozdemir, N. Fundamental solutions to the Cauchy and Dirichlet problems for a heat conduction equation equipped with the Caputo-Fabrizio differentiation. In Heat Conduction: Methods, Applications and Research; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2019. [Google Scholar]
- Erturk, V.S.; Ahmadkhanlu, A.; Kumar, P.; Govindaraj, V. Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative. Optik 2022, 261, 169086. [Google Scholar] [CrossRef]
- Rezk, H.; Albalawi, W.; Abd El-Hamid, H.; Saied, A.I.; Bazighifan, O.; Mohamed, M.S.; Zakarya, M. Hardy-Leindler-Type Inequalities via Conformable Delta Fractional Calculus. J. Funct. Spaces 2022, 2022, 2399182. [Google Scholar] [CrossRef]
- Refaai, D.; El-Sheikh, M.M.; Ismail, G.A.; Zakarya, M.; AlNemer, G.; Rezk, H.M. Stability of Nonlinear Fractional Delay Differential Equations. Symmetry 2022, 14, 1606. [Google Scholar] [CrossRef]
- AlNemer, G.; Kenawy, M.; Zakarya, M.; Cesarano, C.; Rezk, H.M. Generalizations of Hardy’s type inequalities via conformable calculus. Symmetry 2021, 13, 242. [Google Scholar] [CrossRef]
- Kumar, P.; Erturk, V.S.; Harley, C. A novel study on a fractional-order heat conduction model for the human head by using the least-squares method. Int. J. Dyn. Control 2022, 11, 1040–1049. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC), IEEE, Coimbatore, India, 9–11 December2009; pp. 210–214. [Google Scholar]
- Ding, X.; Xu, Z.; Cheung, N.J.; Liu, X. Parameter estimation of Takagi–Sugeno fuzzy system using heterogeneous cuckoo search algorithm. Neurocomputing 2015, 151, 1332–1342. [Google Scholar] [CrossRef]
- Yang, X.S.; Deb, S. Engineering optimisation by cuckoo search. arXiv 2010, arXiv:1005.2908. [Google Scholar] [CrossRef]
- Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [Google Scholar] [CrossRef]
- Cheung, N.J.; Ding, X.M.; Shen, H.B. A nonhomogeneous cuckoo search algorithm based on quantum mechanism for real parameter optimization. IEEE Trans. Cybern. 2016, 47, 391–402. [Google Scholar] [CrossRef] [PubMed]
Case Study 1 | Case Study 2 | Case Study 3 | Case Study 4 |
---|---|---|---|
Case Study 1 | Case Study 2 | Case Study 3 | Case Study 4 | |
---|---|---|---|---|
r | ||||
0.1 | 9.21E−15 | 4.30E−07 | 7.63E−08 | 2.42E−08 |
0.2 | 1.27E−11 | 1.44E−06 | 3.96E−07 | 6.66E−08 |
0.3 | 2.38E−12 | 3.64E−08 | 2.86E−11 | 3.95E−09 |
0.4 | 1.91E−11 | 2.46E−07 | 1.07E−07 | 6.60E−09 |
0.5 | 1.22E−11 | 2.81E−07 | 7.29E−08 | 1.20E−08 |
0.6 | 2.05E−15 | 2.94E−08 | 3.86E−10 | 4.24E−09 |
0.7 | 1.73E−11 | 6.22E−08 | 4.86E−08 | 4.94E−17 |
0.8 | 3.83E−11 | 2.16E−07 | 9.32E−08 | 2.16E−09 |
0.9 | 1.07E−11 | 8.58E−08 | 2.23E−08 | 2.39E−09 |
1.0 | 5.47E−11 | 1.42E−07 | 8.26E−08 | 6.05E−11 |
Case study 1 | Case Study 2 | Case Study 3 | Case Study 4 | |||||
---|---|---|---|---|---|---|---|---|
r | ||||||||
BHCS | LSM | BHCS | LSM | BHCS | LSM | BHCS | LSM | |
0.1 | 1.1603 | 1.1603 | 1.1704 | 1.1688 | 1.1648 | 1.1770 | 1.1616 | 1.1848 |
0.2 | 1.1587 | 1.1587 | 1.1677 | 1.1669 | 1.1626 | 1.1747 | 1.1598 | 1.1819 |
0.3 | 1.1561 | 1.1561 | 1.1637 | 1.1638 | 1.1592 | 1.1710 | 1.1568 | 1.1776 |
0.4 | 1.1524 | 1.1524 | 1.1587 | 1.1596 | 1.1547 | 1.1662 | 1.1528 | 1.1722 |
0.5 | 1.1477 | 1.1477 | 1.1526 | 1.1543 | 1.1492 | 1.1603 | 11.1477 | 1.1656 |
0.6 | 1.1419 | 1.1419 | 1.1457 | 1.1479 | 1.1427 | 1.1534 | 1.1416 | 1.1581 |
0.7 | 1.1350 | 1.1350 | 1.1378 | 1.1405 | 1.1353 | 1.1454 | 1.1345 | 1.1496 |
0.8 | 1.1271 | 1.1271 | 1.1290 | 1.1320 | 1.1269 | 1.1364 | 1.1263 | 1.1401 |
0.9 | 1.1180 | 1.1180 | 1.1194 | 1.1224 | 1.1176 | 1.1264 | 1.1172 | 1.1297 |
1.0 | 1.1078 | 1.1078 | 1.1089 | 1.1118 | 1.1073 | 1.1154 | 1.1070 | 1.1183 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Waseem; Ali, S.; Khattak, S.; Ullah, A.; Ayaz, M.; Awwad, F.A.; Ismail, E.A.A. Artificial Neural Network Solution for a Fractional-Order Human Skull Model Using a Hybrid Cuckoo Search Algorithm. Symmetry 2023, 15, 1722. https://doi.org/10.3390/sym15091722
Waseem, Ali S, Khattak S, Ullah A, Ayaz M, Awwad FA, Ismail EAA. Artificial Neural Network Solution for a Fractional-Order Human Skull Model Using a Hybrid Cuckoo Search Algorithm. Symmetry. 2023; 15(9):1722. https://doi.org/10.3390/sym15091722
Chicago/Turabian StyleWaseem, Sabir Ali, Shahzad Khattak, Asad Ullah, Muhammad Ayaz, Fuad A. Awwad, and Emad A. A. Ismail. 2023. "Artificial Neural Network Solution for a Fractional-Order Human Skull Model Using a Hybrid Cuckoo Search Algorithm" Symmetry 15, no. 9: 1722. https://doi.org/10.3390/sym15091722
APA StyleWaseem, Ali, S., Khattak, S., Ullah, A., Ayaz, M., Awwad, F. A., & Ismail, E. A. A. (2023). Artificial Neural Network Solution for a Fractional-Order Human Skull Model Using a Hybrid Cuckoo Search Algorithm. Symmetry, 15(9), 1722. https://doi.org/10.3390/sym15091722