Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space
Abstract
:1. Introduction
2. Preliminaries
2.1. The One-Dimensional Dunkl Operator
2.2. The Generalized Lizorkin Space
3. Regularization of Integrals with Power Singularity
- Even, ;
- Odd, ; where
3.1. Taylor–Dunkl Formula
3.2. Generalized Power Functions
4. Fractional-Type Integral and Derivative for the Dunkl Operator
4.1. The Riesz–Dunkl Fractional Integral
4.2. Feller–Dunkl Fractional Integral
4.3. Riemann–Liouville–Dunkl fractional integrals
- (1)
- For we have
- (2)
- For and we have
- (3)
- Integration by parts:
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunkl, C.F. Hankel transforms associated to finite reflections groups. Contemp. Math. 1992, 138, 123–138. [Google Scholar]
- Dunkl, C.F. Differential-difference operators associated with reflections groups. Trans. Amer. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Trimèche, K. Paley-Wiener Theorems for the Dunkl transform and Dunkl translation operators. Integral Transform. Spec. Funct. 2002, 13, 17–38. [Google Scholar] [CrossRef]
- De Jeu, M.F.E. The Dunkl transform. Invent. Math. 1993, 113, 147–162. [Google Scholar] [CrossRef]
- Rösler, M. Positivity of Dunkl’s intertwinning operator. Duke Math. J. 1999, 98, 445–463. [Google Scholar] [CrossRef]
- Rösler, M. Bessel-Type Signed Hypergroup on R, in Probability Measures on Groups and Related Structures XI; Heyer, H., Mukherjea, A., Eds.; World Scientific: Singapore, 1995; pp. 292–304. [Google Scholar]
- Rösler, M. Dunkl Operators. Theory and Applications, in Orthogonal Polynomials and Special Functions; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2003; Volume 1817, pp. 93–135. [Google Scholar]
- Feller, W. On a Generalization of Marcel Riesz’s Potentials and the Semi-Groups Generated by Them; Gleerup: Lund, Sweden, 1962; pp. 73–81. [Google Scholar]
- Stein, E.M.; Weiss, G. Fractional Integrals on n-Dimensional Euclidean Space; United States Air Force, Office of Scientific Research: Arlington, VA, USA, 1958; pp. 503–514. [Google Scholar]
- Lizorkin, P.I. Generalized Liouville differentiation and function spaces Lrp(En). Embedding theorems. Mat. Sb. 1963, 102, 325–353. [Google Scholar]
- Samko, S.G. Hypersingular Integrals and Their Applications; Series Analytical Methods and Special Functions 5; Taylor Francis Group: New York, NY, USA, 2005. [Google Scholar]
- Samko, S. Best Constant in the Weighted Hardy Inequality: The Spatial and Spherical Version. Fract. Calc. Appl. Anal. 2005, 8, 39–52. [Google Scholar]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, 2nd ed.; World Scientific: Singapore, 2022. [Google Scholar]
- Kiryakova, V. A guide to special functions in fractional calculus. Mathematics 2021, 9, 106. [Google Scholar] [CrossRef]
- Riesz, M. L’integrale de Riemann-Liouville et le probleme de Cauchy. Acta Math. 1949, 98, 1–222. [Google Scholar] [CrossRef]
- Thangavelu, S.; Xu, Y. Convolution operator and maximal function for Dunkl transform. J. d’Analyse Mathématique 2005, 97, 25–55. [Google Scholar] [CrossRef]
- Thangavelu, S.; Xu, Y. Riesz transform and Riesz potentials for Dunkl transform. J. Comput. Appl. Math. 2007, 199, 181–195. [Google Scholar] [CrossRef]
- Amri, B.; Anker, J.P.; Sifi, M. Three results in Dunkl analysis. Colloq. Math. 2010, 118, 299–312. [Google Scholar] [CrossRef]
- Abdelkefi, C.; Rachdi, M. Some properties of the Riesz potentials in Dunkl analysis. Ric. Mat. 2015, 64, 195–215. [Google Scholar] [CrossRef]
- Abdelkefi, C.; Anker, J.P.; Sassi, F.; Sifi, M. Besov-type spaces on Rd and integrability for the Dunkl transform. Symmetry Integr. Geom. Methods Appl. 2009, 5, 19. [Google Scholar]
- Gorbachev, D.V.; Ivanov, V.I.; Tikhonov, S.Y. Lp-bounded Dunkl-type generalized translation operator and its applications. Constr. Approx. 2019, 49, 555–605. [Google Scholar] [CrossRef]
- Sallam Hassani, S.M.; Sifi, M. Riesz potentials and fractional maximal function for the Dunkl transform. J. Lie Theory 2009, 19, 725–734. [Google Scholar]
- Mourou, M.A. Taylor series associated with a differential-difference operator on the real line. J. Comp. Appl. Math. 2003, 153, 343–354. [Google Scholar] [CrossRef]
- Soltani, F. Sonine Transform assocated to the Dunkl kernel on the real line. Symmetry Integr. Geom. Methods Appl. SIGMA 2008, 4, 92. [Google Scholar]
- Dunkl, C.F.; Xu, Y. Orthogonal Polynomials of Several Variables; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Mainardi, F.; Consiglio, A. The Wright functions of the second kind in Mathematical Physics. Mathematics 2020, 8, 884. [Google Scholar] [CrossRef]
- Garra, R.; Mainardi, F. Some aspects of Wright functions in fractional differential equations. Rep. Math. Phys. 2021, 87, 265–273. [Google Scholar]
- Xu, Y. Dunkl operators: Funk–Hecke formula for orthogonal polynomials on spheres and on balls. Bull. Lond. Math. Soc. 2000, 32, 447–457. [Google Scholar] [CrossRef]
- Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1922; ISBN 9780521483919. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzeffour, F. Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space. Symmetry 2023, 15, 1725. https://doi.org/10.3390/sym15091725
Bouzeffour F. Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space. Symmetry. 2023; 15(9):1725. https://doi.org/10.3390/sym15091725
Chicago/Turabian StyleBouzeffour, Fethi. 2023. "Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space" Symmetry 15, no. 9: 1725. https://doi.org/10.3390/sym15091725
APA StyleBouzeffour, F. (2023). Fractional Integrals Associated with the One-Dimensional Dunkl Operator in Generalized Lizorkin Space. Symmetry, 15(9), 1725. https://doi.org/10.3390/sym15091725