Stochastic Optimal Control Analysis for HBV Epidemic Model with Vaccination
Abstract
:1. Research Background
2. Model Formulation
- L1:
- We assume that both the parameter and system state are non-negative.
- L2:
- Acute duration is short, and if the treatment fails during this period, the individual will be considered in a chronic class.
- L3:
- Our model will include environmental noise by considering the function for as the Brownian standard motion, and and represent the intensities of white noises. Furthermore, Brownian motion satisfies for all i.
- L4:
- Once an individual recovers from the disease, they will obtain permanent immunity.
3. Existence and Uniqueness in the Realm of Positive Solutions
4. Stochastic Analysis
The Extinction of the Disease
- .
5. Stochastic Analysis of the Endemic State
- Within the neighborhood and across its domain, the minimum eigenvalue of the matrix is maintained at a specific distance from zero.
- When x is an element of the space , and the mean time τ needed to reach U from x is not infinite, with remaining finite for every compact subset , and for any π-measurable function , we deduce the following:
The Stationary Distribution and Ergodicity
6. Optimal Control
- The control measure represents vaccination to lower the vulnerable population over time.
- The variable represents the treatment of HBV patients, leading to a reduction in infected individuals within the community.
6.1. Optimal Control of Deterministic Model (2)
6.1.1. Existence of Solution
- For all values of t, the states control’s are non-negative.
- Closed and convex sets are defined in (41).
- The boundedness assures the property of compactness of control model (38).
- In expression (37), the integrand exhibits convexity concerning the control functions, ensuring the existence of optimal control variables .
6.1.2. Optimality Condition
6.2. Optimal Control of Stochastic Model (1)
7. Computer Simulations
7.1. An Extinction-Based Numerical Simulation
7.2. Numerical Simulations of the Disease Distribution
7.3. The Influence of on Stochastic Model (1)
7.4. The Influence of Noise on Stochastic System (1)
7.5. Optimizing Control Strategies through Numerical Simulations
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mann, J.; Roberts, M. Modelling the epidemiology of hepatitis B in New Zealand. J. Theor. Biol. 2001, 269, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, arid current and emerging prevention and control measures. J. Viral Hepat. 2004, 11, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Lok, A.S.; Heathcote, E.J.; Hoofnagle, J.H. Management of hepatitis B: 2000—Summary of a workshop. Gastroenterology 2001, 120, 1828–1853. [Google Scholar] [CrossRef] [PubMed]
- McMahon, B.J. Epidemiology and natural history of hepatitis B. Semin. Liver Dis. 2005, 25, 3–8. [Google Scholar] [CrossRef]
- Trepo, C.; Chan, H.L.Y.; Lok, A. Hepatitis B virus infection. Lancet 2014, 384, 2053–2063. [Google Scholar] [CrossRef]
- Schweitzer, A.; Horn, J.; Mikolajczyk, R.T.; Krause, G.; Ott, J.J. Estimations of worldwide prevalence of chronic hepatitis B virus infection. Lancet 2015, 386, 1546–1555. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, D.; Tan, D.; Zou, A.; Wang, Z.; Gong, H.; Yang, Y.; Sun, L.; Lin, X.; Liang, M.; et al. Immune-enhancing activity of compound polysaccharide on the inactivated influenza vaccine. Carbohydr. Polym. 2024, 336, 122080. [Google Scholar] [CrossRef]
- Sausen, D.G.; Shechter, O.; Bietsch, W.; Shi, Z.; Miller, S.M.; Gallo, E.S.; Dahari, H.; Borenstein, R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int. J. Mol. Sci. 2022, 23, 15973. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, J.; Qiu, C. Asymptotic analysis for one-stage stochastic linear complementarity problems and applications. Mathematics 2023, 11, 482. [Google Scholar] [CrossRef]
- Xiang, X.; Zhou, J.; Deng, Y.; Yang, X. Identifying the generator matrix of a stationary Markov chain using partially observable data. Chaos Interdiscip. J. Nonlinear Sci. 2024, 34, 023132. [Google Scholar] [CrossRef]
- Cao, P.; Pan, J. Understanding Factors Influencing Geographic Variation in Healthcare Expenditures: A Small Areas Analysis Study. Inq. J. Health Care Organ. Provis. Financ. 2024, 61, 00469580231224823. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, F.; Xu, R.; Awan, M.U.N.; Song, Y.; Han, Q.; Xia, X.; Wei, J.; Xu, J.; Peng, J.; Zhang, J. HBV Vaccines: Advances and Development. Vaccines 2023, 11, 1862. [Google Scholar] [CrossRef] [PubMed]
- Din, A.; Li, Y. Stationary distribution extinction and optimal control for the stochastic hepatitis B epidemic model with partial immunity. Phys. Scr. 2021, 96, 074005. [Google Scholar] [CrossRef]
- Hussain, G.; Khan, A.; Zahri, M.; Zaman, G. Ergodic stationary distribution of stochastic epidemic model for HBV with double saturated incidence rates and vaccination. Chaos Solitons Fractals 2022, 160, 112195. [Google Scholar] [CrossRef]
- Khan, A.; Hussain, G.; Yusuf, A.; Usman, A.H.; Humphries, U.W. A hepatitis stochastic epidemic model with acute and chronic stages. Adv. Differ. Equ. 2021, 2021, 181. [Google Scholar] [CrossRef]
- Shah, S.M.A.; Nie, Y.; Din, A.; Alkhazzan, A. Dynamics of Hepatitis B Virus Transmission with a Lévy Process and Vaccination Effects. Mathematics 2024, 12, 1645. [Google Scholar] [CrossRef]
- Khan, T.; Khan, A.; Zaman, G. The extinction and persistence of the stochastic hepatitis B epidemic model. Chaos Solitons Fractals 2018, 108, 123–128. [Google Scholar] [CrossRef]
- Ma, J.; Ma, S. Dynamics of a stochastic hepatitis B virus transmission model with media coverage and a case study of China. Math. Biosci. Eng. 2023, 20, 3070–3098. [Google Scholar] [CrossRef]
- Alade, T.O.; Ghaleb, S.A.; Alsulami, S.M. Global stability of a class of virus dynamics models with general incidence rate and multitarget cells. Eur. Phys. J. Plus 2021, 136, 865. [Google Scholar] [CrossRef]
- Zhang, T.; Li, H.; Xie, N.; Fu, W.; Wang, K.; Ding, X. Mathematical analysis and simulation of a hepatitis B model with time delay: A case study for Xinjiang. China. Math. Biosci. Eng. 2020, 17, 1757–1775. [Google Scholar] [CrossRef]
- Zou, L.; Ruan, S.; Zhang, W. On the sexual transmission dynamics of hepatitis B virus in China. J. Theor. Biol. 2015, 369, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Zhou, Y. Dynamic analysis of a hepatitis B model with three-age-classes. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 2466–2478. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, X. A mathematical model for hepatitis B with infection-age structure. Discret. Contin. Dyn. Syst. Ser. B 2016, 21, 1329–1346. [Google Scholar] [CrossRef]
- Khan, T.; Zaman, G.; Chohan, M.I. The transmission dynamic and optimal control of acute and chronic hepatitis B. J. Biol. Dyn. 2017, 11, 172–189. [Google Scholar] [CrossRef]
- Din, A.; Li, Y.; Liu, Q. Viral dynamics and control of hepatitis B virus(HBV) using an epidemic model. Alex. Eng. J. 2020, 59, 667–679. [Google Scholar] [CrossRef]
- Mao, X. Stochastic Differential Equations and Their Applications; Horwood: Chichester, UK, 1997. [Google Scholar]
- Lu, Q. Stability of SIRS system with random perturbations. Physica A 2009, 388, 3677–3686. [Google Scholar] [CrossRef]
- Ji, C.; Jiang, D.; Shi, N. Multigroup SIR epidemic model with stochastic perturbation. Physica A 2011, 390, 1747–1762. [Google Scholar] [CrossRef]
- Zhang, X.-B.; Wang, X.-D.; Huo, H.-F. Extinction and stationary distribution of a stochastic SIRS epidemic model with standard incidence rate and partial immunity. Physica A 2019, 531, 121548, partial immunity. Physica A 2019, 531, 121548. [Google Scholar] [CrossRef]
- Khasminskii, R. Stochastic Stability of Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011; Volume 66. [Google Scholar]
- Okosun, K.O.; Makinde, O.D.; Takaidza, I. Impact of optimal control on the treatment of HIV/AIDS and screening of unaware infectives. Appl. Math. Model. 2013, 37, 3802–3820. [Google Scholar] [CrossRef]
- Fleming, W.H.; Rishel, R.W. Deterministic and Stochastic Optimal Control; Springer: New York, NY, USA, 1975. [Google Scholar]
- Zhang, L.; Liu, B. The obstacle problem of integro-partial differential equations with applications to stochastic optimal control stopping problem. J. Frankl. Inst. 2019, 356, 1396–1423. [Google Scholar] [CrossRef]
- Frankowska, H. Optimal control under state constraints. In Proceedings of the International Congress of Mathematicians, Hyderabad, India, 19–27 August 2010. [Google Scholar]
- Kar, T.K.; Jana, S. A theoretical study on mathematical modelling of an infectious disease with application of optimal control. BioSystems 2013, 111, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Bai, C. Optimal harvesting of a stochastic delay competitive model. Discret. Contin. Dyn. Syst.-Ser. B 2017, 22, 1493. [Google Scholar] [CrossRef]
- Liu, L.; Meng, X. Optimal harvesting control and dynamics of two-species stochastic model with delays. Adv. Differ. 2017, 2017, 1–17. [Google Scholar] [CrossRef]
- Din, A.; Li, Y. The Complex Dynamics of Hepatitis B Infected Individuals with Optimal Control. J. Syst. Sci. Complex. 2020, 33, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Kamien, M.I.; Schwartz, N.L. Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management; Courier Corporation: Washington, DC, USA, 2012; p. 31. [Google Scholar]
- Zaman, G.; Kang, Y.H.; Jung, I.H. Optimal treatment of an SIR epidemic model with time delay. BioSystems 2009, 98, 43–50. [Google Scholar] [CrossRef]
- Pontryagin, L.S.; Boltyanskii, V.G.; Gamkrelize, R.V.; Mishchenko, E.F. The Mathematical Theory of Optimal Processes; Wiley: New York, NY, USA, 1962. [Google Scholar]
- Little, C.H.C. A characterization of convertible (0,1)-matrices. J. Comb. Theory Ser. B 1975, 18, 187–208. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shah, S.M.A.; Nie, Y.; Din, A.; Alkhazzan, A. Stochastic Optimal Control Analysis for HBV Epidemic Model with Vaccination. Symmetry 2024, 16, 1306. https://doi.org/10.3390/sym16101306
Shah SMA, Nie Y, Din A, Alkhazzan A. Stochastic Optimal Control Analysis for HBV Epidemic Model with Vaccination. Symmetry. 2024; 16(10):1306. https://doi.org/10.3390/sym16101306
Chicago/Turabian StyleShah, Sayed Murad Ali, Yufeng Nie, Anwarud Din, and Abdulwasea Alkhazzan. 2024. "Stochastic Optimal Control Analysis for HBV Epidemic Model with Vaccination" Symmetry 16, no. 10: 1306. https://doi.org/10.3390/sym16101306
APA StyleShah, S. M. A., Nie, Y., Din, A., & Alkhazzan, A. (2024). Stochastic Optimal Control Analysis for HBV Epidemic Model with Vaccination. Symmetry, 16(10), 1306. https://doi.org/10.3390/sym16101306