Symmetrical Generalized Pareto Dominance and Adjusted Reference Vector Cooperative Evolutionary Algorithm for Many-Objective Optimization
Abstract
:1. Introduction
- (1)
- We propose a new evolutionary algorithm framework based on both symmetrical generalized Pareto dominance (GPD) and anadjusted reference vector cooperative strategy to deal with MaOPs more effectively, where the former enhances selection pressure and the latter maintains population diversity.
- (2)
- To effectively address problems with different Pareto front (PF) shapes, we design an adjusted reference vector mechanism that generates and selects valid reference vectors based on historical evolutionary information.
- (3)
- We conduct comprehensive experiments to validate the performance of our proposed algorithm and demonstrate its superiority on benchmark functions.
2. Related Works
2.1. Many-Objective Optimization Evolutionary Algorithms
2.2. Property Analysis of Symmetrical GPD
2.2.1. Symmetrical GPD-Based Ranking Scheme
2.2.2. Additional Theoretical Study on Property Analysis
2.3. Reference Vector Adaptation
2.4. Motivation
3. Proposed Algorithm
3.1. Overall Framework
Algorithm 1 Pseudo-code of GPDARVC |
|
3.2. GPD and RV Cooperative Environmental Selection Strategy
3.3. Reference Vector Adjustment
Algorithm 2 Association Operator |
|
Algorithm 3 Environmental Selection |
|
4. Experimental Results and Analysis
4.1. Experimental Design
4.1.1. Comparative Algorithms
- ANSGA-III [16] introduces an adaptive RV adjustment strategy to enhance the original NSGA-III. Specifically, new RVs are generated near the existing ones with more than two associations, while unassociated new RVs are removed.
- MaOEA-IGD [55] is an indicator-based approach that prioritizes solutions based on the IGD metric to guide the optimization process.
- DEAGNG [32] is a decomposition-based evolutionary algorithm that decomposes a multi-objective problem into several single-objective subproblems and guides the search process using neural networks and Gaussian process models.
- LMPFE [56] combines feedback mechanisms with Pareto optimization methods. By introducing a feedback evolutionary mechanism and Pareto dominance strategy, LMPFE effectively addresses the computational challenges of large-scale multi-objective optimization problems, offering an efficient, balanced, and diverse set of solutions.
- TS-DGPD [57] introduces a dynamic generalized Pareto dominance with two stages, where the first stage focuses on convergence and the second stage emphasizes solution diversity.
- RVEAiGNG [58] is an adaptive reference vector-based decomposition algorithm that presents a new approach to learning the distribution of reference vectors using a growing neural gas (GNG) network for automatic and stable adaptation.
- MultiGPO [21] utilizes M symmetric -GPD scenarios, where each scenario enhances the selection pressure on objectives by expanding the dominance region of solutions while keeping the omitted objective constant. It demonstrates strong performance in handling unknown and irregular shapes of the PF.
4.1.2. Test Problems
4.1.3. General Parameter Settings
4.1.4. Performance Indicators
4.2. Experimental Results
4.2.1. Comparison Results on DTLZ Test Problems
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
DTLZ1 | 5 | 9 | 4.5940 × (2.79 × ) − | 1.6484 × (2.26 × ) − | 1.1869 × (7.02 × ) − | 3.8683 × (3.65 × ) ≈ | 3.8479 × (4.12 × ) − | 4.1497 × (4.26 × ) − | 3.7186 × (3.94 × ) ≈ | 3.7288 × (3.53 × ) |
10 | 14 | 1.0091 × (4.95 × ) ≈ | 8.3402 × (8.83 × ) − | 1.6365 × (2.21 × ) − | 4.2190 × (2.41 × ) − | 8.1648 × (2.14 × ) − | 6.7808 × (1.32 × ) + | 7.3197 × (1.64 × ) + | 7.8383 × (1.87 × ) | |
15 | 19 | 1.1110 × (2.95 × ) − | 1.3751 × (1.16 × ) ≈ | 1.3841 × (2.02 × ) − | 5.8046 × (2.52 × ) − | 1.5316 × (8.71 × ) − | 9.0277 × (4.85 × ) ≈ | 9.2294 × (1.48 × ) − | 8.9358 × (3.19 × ) | |
DTLZ2 | 5 | 14 | 7.2399 × (1.90 × ) − | 6.2558 × (1.37 × ) + | 9.1342 × (3.53 × ) − | 7.1808 × (6.91 × ) − | 7.5589 × (1.67 × ) − | 8.1319 × (1.39 × ) − | 7.2676 × (9.48 × ) − | 6.4962 × (3.76 × ) |
10 | 19 | 1.8723 × (2.27 × ) − | 1.7174 × (2.20 × ) ≈ | 2.0901 × (6.87 × ) − | 1.7127 × (1.81 × ) ≈ | 1.8453 × (2.04 × ) − | 1.7177 × (1.98 × ) − | 1.7985 × (2.26 × ) − | 1.7059 × (4.57 × ) | |
15 | 24 | 2.7307 × (1.14 × ) − | 3.4632 × (4.18 × ) − | 2.7434 × (1.29 × ) − | 2.1462 × (6.49 × ) + | 2.3962 × (3.42 × ) − | 2.0609 × (1.30 × ) + | 2.3293 × (3.69 × ) − | 2.2582 × (3.02 × ) | |
DTLZ3 | 5 | 14 | 8.7895 × (1.39 × ) − | 9.3756 × (3.39 × ) − | 6.6271 × (6.24 × ) − | 8.7121 × (1.27 × ) − | 8.2726 × (7.27 × ) − | 2.0207 × (3.40 × ) − | 7.5985 × (4.31 × ) − | 7.0722 × (3.81 × ) |
10 | 19 | 1.0563 × (1.46 × ) − | 5.7939 × (3.81 × ) − | 5.6195 × (4.63 × ) − | 1.7652 × (4.94 × ) − | 6.0260 × (2.83 × ) − | 1.9765 × (1.14 × ) − | 2.1157 × (2.17 × ) − | 1.7589 × (3.25 × ) | |
15 | 24 | 1.0656 × (1.10 × ) − | 2.9275 × (1.44 × ) − | 1.2831 × (9.29 × ) − | 2.2181 × (1.11 × ) − | 1.5036 × (5.70 × ) − | 5.0271 × (1.24 × ) − | 3.1552 × (2.17 × ) − | 2.3615 × (4.27 × ) | |
DTLZ4 | 5 | 14 | 8.2551 × (3.36 × ) − | 8.5652 × (5.37 × ) − | 8.3777 × (1.88 × ) − | 7.5100 × (3.07 × ) − | 7.5667 × (1.43 × ) − | 8.1083 × (1.50 × ) − | 7.1703 × (9.50 × ) − | 6.5065 × (3.51 × ) |
10 | 19 | 1.7301 × (1.59 × ) − | 1.6819 × (2.34 × ) + | 1.9234 × (2.32 × ) − | 3.4013 × (1.19 × ) − | 1.9482 × (3.11 × ) − | 1.6760 × (5.38 × ) + | 1.7873 × (1.97 × ) − | 1.7000 × (4.38 × ) | |
15 | 24 | 2.4452 × (1.69 × ) − | 2.4560 × (9.73 × ) − | 2.3419 × (1.85 × ) − | 6.7045 × (1.18 × ) − | 2.4074 × (3.77 × ) − | 2.0871 × (2.77 × ) + | 2.2292 × (1.84 × ) ≈ | 2.2433 × (3.02 × ) | |
DTLZ5 | 5 | 14 | 8.3713 × (4.41 × ) − | 1.9781 × (1.34 × ) − | 9.2131 × (4.62 × ) − | 1.1761 × (4.57 × ) − | 7.2629 × (1.35 × ) − | 7.8482 × (2.96 × ) − | 5.0725 × (1.18 × ) − | 4.2347 × (8.12 × ) |
10 | 19 | 2.5344 × (7.96 × ) − | 2.1530 × (1.50 × ) − | 1.7411 × (4.27 × ) − | 2.1220 × (1.12 × ) − | 2.0418 × (9.42 × ) − | 8.5474 × (3.14 × ) ≈ | 1.0025 × (1.87 × ) − | 8.1812 × (1.90 × ) | |
15 | 24 | 2.4511 × (5.02 × ) − | 2.7130 × (1.38 × ) − | 1.9716 × (1.20 × ) − | 1.7899 × (1.14 × ) ≈ | 2.8725 × (1.21 × ) − | 1.5339 × (6.18 × ) − | 1.0616 × (1.85 × ) ≈ | 1.0318 × (2.35 × ) | |
DTLZ6 | 5 | 14 | 1.4439 × (7.92 × ) − | 3.6647 × (4.45 × ) − | 2.0144 × (9.35 × ) − | 1.9246 × (9.81 × ) − | 8.5002 × (2.09 × ) − | 7.6623 × (6.34 × ) − | 6.7124 × (1.76 × ) − | 5.0886 × (1.35 × ) |
10 | 19 | 8.7498 × (3.95 × ) − | 3.7580 × (4.29 × ) − | 2.9028 × (1.20 × ) − | 4.8067 × (2.88 × ) − | 2.8921 × (6.01 × ) − | 1.1994 × (5.96 × ) − | 1.0211 × (2.30 × ) − | 8.0732 × (1.36 × ) | |
15 | 24 | 3.3181 × (2.25 × ) − | 3.6167 × (6.54 × ) − | 2.5802 × (1.43 × ) − | 4.4900 × (2.58 × ) − | 3.0743 × (8.00 × ) − | 1.2655 × (6.67 × ) − | 8.9775 × (1.62 × ) ≈ | 8.0777 × (1.42 × ) | |
DTLZ7 | 5 | 24 | 1.7507 × (1.28 × ) − | 3.5902 × (6.20 × ) − | 1.4210 × (1.86 × ) − | 7.2225 × (4.21 × ) − | 1.7335 × (7.54 × ) − | 1.3739 × (3.03 × ) ≈ | 1.4859 × (2.83 × ) − | 1.2910 × (3.47 × ) |
10 | 29 | 7.3341 × (6.21 × ) − | 1.0440 × (5.25 × ) − | 7.2080 × (1.34 × ) ≈ | 2.8063 × (6.49 × ) − | 1.0383 × (7.95 × ) − | 6.0740 × (1.18 × ) + | 7.2405 × (7.40 × ) − | 6.7953 × (8.44 × ) | |
15 | 34 | 4.1275 × (6.89 × ) − | 1.4484 × (3.81 × ) + | 6.2862 × (1.22 × ) − | 4.8606 × (2.50 × ) − | 4.1692 × (1.10 × ) − | 1.1196 × (6.47 × ) + | 1.3657 × (4.60 × ) + | 1.6508 × (2.65 × ) | |
+/−/≈ | 0/20/1 | 3/16/2 | 0/20/1 | 1/17/3 | 0/21/0 | 6/12/3 | 2/15/4 |
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
DTLZ1 | 5 | 9 | 9.7467 × (5.08 × ) − | 6.9071 × (3.72 × ) − | 7.5756 × (1.85 × ) − | 9.7826 × (2.34 × ) − | 9.7401 × (8.64 × ) − | 9.7198 × (1.03 × ) − | 9.7613 × (5.21 × ) − | 9.7983 × (5.83 × ) |
10 | 14 | 9.6796 × (6.81 × ) − | 9.4663 × (2.15 × ) − | 7.9822 × (7.72 × ) − | 0.0000 × (0.00 × ) − | 9.8785 × (4.45 × ) − | 9.9889 × (3.11 × ) − | 9.9897 × (6.31 × ) − | 9.9973 × (4.84 × ) | |
15 | 19 | 9.9638 × (3.65 × ) − | 8.0403 × (2.74 × ) − | 9.3265 × (4.37 × ) − | 0.0000 × (0.00 × ) − | 8.8154 × (2.16 × ) − | 9.9950 × (1.93 × ) − | 9.9977 × (4.47 × ) ≈ | 9.9983 × (1.58 × ) | |
DTLZ2 | 5 | 14 | 7.9323 × (2.86 × ) − | 8.1165 × (4.93 × ) + | 7.3010 × (6.83 × ) − | 8.0043 × (1.25 × ) − | 7.9792 × (2.30 × ) − | 7.8661 × (2.15 × ) − | 8.0238 × (1.56 × ) − | 8.1113 × (5.40 × ) |
10 | 19 | 9.5697 × (1.80 × ) − | 9.6864 × (1.31 × ) − | 8.8748 × (1.61 × ) − | 9.6401 × (6.48 × ) − | 9.5638 × (1.40 × ) − | 9.6646 × (6.49 × ) − | 9.5936 × (1.09 × ) − | 9.7172 × (1.84 × ) | |
15 | 24 | 9.7059 × (8.21 × ) − | 8.9483 × (4.89 × ) − | 9.5633 × (1.60 × ) − | 9.5715 × (1.50 × ) − | 9.7977 × (1.01 × ) − | 9.8529 × (6.77 × ) − | 9.8318 × (1.06 × ) − | 9.9344 × (2.73 × ) | |
DTLZ3 | 5 | 14 | 7.7094 × (2.10 × ) − | 0.0000 × (0.00 × ) − | 2.9351 × (2.86 × ) − | 2.7248 × (2.66 × ) − | 7.8876 × (1.09 × ) − | 6.7145 × (1.98 × ) − | 7.9903 × (5.47 × ) − | 8.0451 × (4.55 × ) |
10 | 19 | 5.0439 × (3.65 × ) − | 4.0281 × (1.80 × ) − | 5.2679 × (2.72 × ) − | 0.0000 × (0.00 × ) − | 1.8650 × (8.34 × ) − | 9.4986 × (6.13 × ) − | 9.3478 × (2.28 × ) − | 9.6892 × (1.46 × ) | |
15 | 24 | 5.4395 × (4.14 × ) − | 1.6729 × (5.73 × ) − | 2.6632 × (3.44 × ) − | 0.0000 × (0.00 × ) − | 0.0000 × (0.00 × ) − | 6.0291 × (2.38 × ) − | 9.2194 × (2.17 × ) − | 9.9179 × (1.37 × ) | |
DTLZ4 | 5 | 14 | 7.7993 × (4.53 × ) − | 7.8450 × (6.58 × ) − | 7.6365 × (6.95 × ) − | 7.9756 × (4.23 × ) − | 7.9869 × (2.22 × ) − | 7.8782 × (1.81 × ) − | 8.0448 × (1.66 × ) − | 8.1079 × (6.75 × ) |
10 | 19 | 9.6968 × (4.71 × ) − | 9.7061 × (2.27 × ) − | 9.2911 × (6.90 × ) − | 6.9479 × (2.81 × ) − | 9.5244 × (2.28 × ) − | 9.7050 × (2.76 × ) − | 9.6239 × (8.93 × ) − | 9.7192 × (2.17 × ) | |
15 | 24 | 9.8589 × (6.32 × ) − | 9.8759 × (4.59 × ) − | 9.8853 × (7.04 × ) − | 1.2436 × (1.98 × ) − | 9.8169 × (1.17 × ) − | 9.8978 × (5.21 × ) − | 9.8758 × (3.91 × ) − | 9.9367 × (3.00 × ) | |
DTLZ5 | 5 | 14 | 1.0344 × (1.03 × ) ≈ | 9.7748 × (1.25 × ) − | 5.6660 × (2.61 × ) − | 4.0420 × (3.69 × ) − | 9.6143 × (4.44 × ) − | 4.9892 × (2.86 × ) − | 1.0154 × (4.95 × ) − | 1.0491 × (4.70 × ) |
10 | 19 | 7.7316 × (8.11 × ) − | 9.1297 × (3.96 × ) + | 5.5381 × (3.00 × ) − | 3.0640 × (3.85 × ) − | 4.7509 × (2.89 × ) − | 3.8559 × (3.49 × ) − | 8.6196 × (3.13 × ) − | 8.9374 × (8.76 × ) | |
15 | 24 | 7.5368 × (8.11 × ) − | 9.0665 × (2.94 × ) + | 6.5311 × (2.56 × ) − | 4.7680 × (4.09 × ) − | 2.9159 × (2.97 × ) − | 1.0789 × (2.56 × ) − | 8.8644 × (1.95 × ) ≈ | 8.9241 × (1.18 × ) | |
DTLZ6 | 5 | 14 | 9.1198 × (7.20 × ) − | 8.7792 × (3.00 × ) ≈ | 2.4239 × (3.00 × ) − | 2.8008 × (3.94 × ) − | 9.2434 × (1.83 × ) − | 8.3305 × (2.43 × ) − | 9.7489 × (6.38 × ) ≈ | 1.0093 × (6.61 × ) |
10 | 19 | 4.5462 × (2.03 × ) − | 8.7055 × (2.05 × ) − | 9.4325 × (2.79 × ) − | 9.0904 × (2.80 × ) − | 0.0000 × (0.00 × ) − | 6.8785 × (3.34 × ) − | 8.9286 × (7.10 × ) ≈ | 9.0887 × (1.94 × ) | |
15 | 24 | 6.4410 × (3.89 × ) − | 9.1216 × (1.50 × ) + | 3.5501 × (4.37 × ) − | 1.6996 × (3.52 × ) − | 0.0000 × (0.00 × ) − | 8.3514 × (1.21 × ) − | 9.0959 × (2.43 × ) ≈ | 9.0971 × (2.57 × ) | |
DTLZ7 | 5 | 24 | 2.4029 × (3.73 × ) − | 1.3352 × (3.74 × ) − | 2.5958 × (4.31 × ) ≈ | 2.2551 × (1.10 × ) − | 2.3092 × (4.96 × ) − | 2.5195 × (2.68 × ) − | 2.5318 × (3.91 × ) − | 2.6175 × (2.61 × ) |
10 | 29 | 1.7112 × (6.30 × ) + | 2.2534 × (1.63 × ) − | 1.8778 × (9.57 × ) + | 1.1505 × (1.86 × ) − | 6.0844 × (1.57 × ) − | 1.5507 × (8.85 × ) + | 1.1874 × (2.20 × ) − | 1.3533 × (1.22 × ) | |
15 | 34 | 6.5540 × (1.87 × ) − | 5.7682 × (1.02 × ) − | 1.4783 × (7.86 × ) + | 5.4693 × (8.87 × ) − | 2.5400 × (1.98 × ) − | 6.6297 × (1.95 × ) − | 9.4165 × (2.81 × ) − | 1.1945 × (1.29 × ) | |
+/−/≈ | 1/19/1 | 4/16/1 | 2/18/1 | 0/21/0 | 0/21/0 | 1/20/0 | 0/16/5 |
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
MaF1 | 5 | 14 | 1.6606 × (5.20 × ) − | 2.3569 × (1.22 × ) − | 7.5183 × (5.38 × ) + | 7.9743 × (1.13 × ) + | 8.1819 × (1.51 × ) + | 7.5788 × (4.63 × ) + | 7.9782 × (1.83 × ) + | 8.3015 × (1.78 × ) |
10 | 19 | 2.2099 × (5.30 × ) − | 2.8747 × (3.60 × ) − | 1.6670 × (3.45 × ) − | 1.6617 × (3.32 × ) ≈ | 1.6531 × (9.13 × ) − | 2.0729 × (2.73 × ) − | 1.6563 × (1.21 × ) − | 1.6473 × (9.92 × ) | |
15 | 24 | 2.6978 × (5.98 × ) − | 3.3135 × (8.48 × ) − | 2.1353 × (6.58 × ) − | 2.1314 × (6.21 × ) − | 2.0234 × (2.03 × ) − | 3.3587 × (3.98 × ) − | 1.9735 × (1.55 × ) ≈ | 1.9732 × (1.36 × ) | |
MaF2 | 5 | 14 | 7.0936 × (1.70 × ) − | 1.4727 × (7.92 × ) − | 4.5175 × (1.22 × ) + | 4.9204 × (1.35 × ) + | 6.1556 × (1.84 × ) − | 4.8672 × (1.20 × ) + | 5.5021 × (9.87 × ) − | 5.1897 × (5.97 × ) |
10 | 19 | 1.3271 × (1.17 × ) − | 2.1721 × (2.01 × ) − | 1.4806 × (1.43 × ) − | 1.0021 × (2.57 × ) + | 1.1581 × (4.41 × ) ≈ | 9.8642 × (2.21 × ) + | 1.1747 × (4.81 × ) ≈ | 1.1473 × (5.72 × ) | |
15 | 24 | 1.4794 × (1.32 × ) − | 2.5160 × (8.31 × ) − | 1.6271 × (9.17 × ) − | 1.0379 × (2.19 × ) + | 1.2695 × (6.55 × ) + | 1.1942 × (4.77 × ) + | 1.3660 × (8.25 × ) ≈ | 1.3594 × (8.00 × ) | |
MaF3 | 5 | 14 | 5.6303 × (1.88 × ) − | 9.4828 × (1.55 × ) − | 4.2387 × (7.46 × ) − | 4.9867 × (6.61 × ) − | 4.3086 × (1.29 × ) − | 1.0050 × (4.06 × ) − | 3.7722 × (1.24 × ) − | 2.5824 × (1.93 × ) |
10 | 19 | 1.7344 × (2.53 × ) − | 2.9170 × (1.30 × ) − | 1.2394 × (3.30 × ) − | 1.7889 × (1.20 × ) − | 9.4391 × (1.02 × ) − | 2.8265 × (5.13 × ) − | 2.8817 × (4.44 × ) − | 2.2447 × (3.56 × ) | |
15 | 24 | 9.8689 × (2.04 × ) − | 8.9986 × (9.92 × ) − | 2.7306 × (3.16 × ) − | 5.5053 × (5.42 × ) − | 1.0747 × (1.86 × ) − | 1.8247 × (9.23 × ) ≈ | 1.8025 × (1.23 × ) ≈ | 1.8913 × (1.62 × ) | |
MaF4 | 5 | 14 | 1.4303 × (4.48 × ) − | 8.1059 × (5.98 × ) − | 2.0018 × (2.50 × ) − | 1.2915 × (2.00 × ) − | 7.5510 × (6.43 × ) − | 2.5136 × (3.53 × ) − | 6.1668 × (3.32 × ) ≈ | 5.9851 × (3.03 × ) |
10 | 19 | 5.3163 × (9.76 × ) − | 1.2294 × (1.48 × ) − | 2.6666 × (1.05 × ) − | 7.5703 × (1.59 × ) − | 1.9120 × (2.97 × ) − | 1.0889 × (1.67 × ) − | 9.0576 × (4.20 × ) + | 9.4958 × (1.82 × 5) | |
15 | 24 | 1.8827 × (3.88 × ) − | 1.4482 × (8.58 × ) − | 8.0599 × (4.86 × ) − | 2.1618 × (4.35 × ) − | 6.7287 × (1.03 × ) − | 3.2945 × (7.85 × ) − | 1.7705 × (8.70 × ) ≈ | 1.7923 × (1.04 × ) | |
MaF5 | 5 | 14 | 4.5204 × (1.94 × ) + | 6.0440 × (1.07 × ) − | 5.2332 × (2.83 × ) − | 4.0849 × (1.78 × ) + | 4.1832 × (9.69 × ) + | 4.1927 × (5.88 × ) + | 4.2646 × (1.49 × ) + | 4.5367 × (3.03 × ) |
10 | 19 | 1.0751 × (2.69 × ) + | 2.0641 × (8.65 × ) ≈ | 1.7260 × (4.22 × ) − | 2.3732 × (7.81 × ) − | 1.3226 × (2.82 × ) − | 2.0394 × (6.50 × ) − | 1.2289 × (8.87 × ) − | 1.2149 × (2.28 × ) | |
15 | 24 | 1.3994 × (2.82 × ) + | 1.5208 × (5.31 × ) ≈ | 1.5103 × (3.08 × ) ≈ | 2.8187 × (8.29 × ) − | 1.6232 × (9.39 × ) − | 2.7160 × (8.62 × ) − | 1.4946 × (7.76 × ) ≈ | 1.4939 × (1.17 × ) | |
MaF6 | 5 | 14 | 2.2371 × (3.09 × ) − | 3.1356 × (1.21 × ) − | 8.7643 × (1.94 × ) + | 1.1064 × (4.61 × ) + | 2.7616 × (6.61 × ) − | 9.0313 × (1.67 × ) + | 1.1450 × (7.02 × ) ≈ | 1.1069 × (5.97 × ) |
10 | 19 | 4.7019 × (1.87 × ) − | 2.8899 × (1.38 × ) − | 1.5260 × (7.86 × ) − | 8.7070 × (5.09 × ) − | 1.0535 × (1.18 × ) ≈ | 6.6778 × (1.06 × ) + | 8.5688 × (1.06 × ) ≈ | 1.3317 × (3.24 × ) | |
15 | 24 | 6.0390 × (4.03 × ) − | 3.2384 × (1.12 × ) − | 2.9242 × (5.37 × ) − | 8.1644 × (2.68 × ) − | 3.1620 × (1.70 × ) − | 8.7765 × (1.80 × ) − | 1.7838 × (9.80 × ) − | 8.2901 × (4.18 × ) | |
MaF7 | 5 | 24 | 1.7114 × (6.57 × ) − | 3.5034 × (6.11 × ) − | 1.5084 × (3.11 × ) − | 7.1766 × (4.16 × ) − | 2.2878 × (2.46 × ) − | 1.7890 × (2.08 × ) − | 1.4972 × (3.28 × ) − | 1.3091 × (3.40 × ) |
10 | 29 | 7.6578 × (8.08 × ) − | 9.4335 × (5.43 × ) − | 7.1346 × (1.06 × ) ≈ | 3.1147 × (4.29 × ) − | 1.0215 × (5.72 × ) − | 7.0206 × (1.09 × ) ≈ | 7.2159 × (1.30 × ) − | 6.7698 × (2.28 × ) | |
15 | 34 | 3.8166 × (4.97 × ) − | 1.4071 × (3.05 × ) + | 6.1926 × (1.23 × ) − | 3.9574 × (1.94 × ) − | 4.6812 × (1.16 × ) − | 1.0804 × (4.88 × ) + | 1.3687 × (4.51 × ) + | 1.6345 × (2.05 × ) | |
MaF8 | 5 | 2 | 1.1688 × (8.20 × ) − | 4.7808 × (1.24 × ) − | 6.9349 × (1.32 × ) − | 5.2867 × (1.18 × ) ≈ | 4.9541 × (1.15 × ) − | 4.6795 × (2.49 × ) ≈ | 4.6910 × (7.83 × ) ≈ | 4.6730 × (6.46 × ) |
10 | 2 | 1.8739 × (2.32 × ) − | 7.5160 × (9.32 × ) − | 7.9392 × (1.43 × ) − | 5.9367 × (2.97 × ) + | 5.9573 × (5.65 × ) + | 5.9981 × (3.12 × ) + | 6.2770 × (8.61 × ) ≈ | 6.2620 × (0.00 × ) | |
15 | 2 | 2.0426 × (3.44 × ) − | 1.0367 × (1.21 × ) − | 1.0852 × (1.48 × ) − | 1.6307 × (1.16 × ) − | 1.2445 × (2.08 × ) − | 8.0664 × (6.19 × ) + | 9.7711 × (3.59 × ) − | 9.3734 × (3.91 × ) | |
MaF9 | 5 | 2 | 4.0719 × (1.34 × ) − | 1.0726 × (1.52 × ) − | 2.0417 × (9.78 × ) − | 2.0377 × (4.43 × ) − | 5.3614 × (7.26 × ) − | 5.2639 × (2.06 × ) ≈ | 5.1864 × (4.82 × ) + | 5.2483 × (6.17 × ) |
10 | 2 | 3.5583 × (5.34 × ) − | 9.9237 × (7.95 × ) − | 3.7940 × (1.28 × ) − | 7.4453 × (1.38 × ) − | 9.0437 × (4.11 × ) − | 1.4580 × (4.37 × ) − | 7.2169 × (3.68 × ) ≈ | 7.2283 × (4.99 × ) | |
15 | 2 | 8.2976 × (2.55 × ) − | 4.4101 × (5.08 × ) − | 2.5146 × (6.24 × ) − | 5.3184 × (2.69 × ) − | 6.6236 × (2.56 × ) ≈ | 9.3655 × (1.34 × ) − | 9.0100 × (4.79 × ) ≈ | 9.0164 × (5.73 × ) | |
MaF10 | 5 | 14 | 1.6834 × (7.92 × ) − | 5.5384 × (1.67 × ) − | 2.9452 × (5.29 × ) − | 3.6327 × (5.15 × ) − | 1.6536 × (2.37 × ) − | 3.8897 × (8.26 × ) − | 1.2150 × (1.30 × ) − | 1.0616 × (1.75 × ) |
10 | 19 | 2.8409 × (6.00 × ) − | 6.4970 × (4.06 × ) − | 4.2634 × (1.01 × ) − | 3.5981 × (7.23 × ) − | 4.1446 × (6.29 × ) − | 4.9240 × (9.84 × ) − | 2.2751 × (7.09 × ) − | 1.7741 × (7.35 × ) | |
15 | 24 | 3.5555 × (4.40 × ) − | 4.9849 × (3.49 × ) − | 5.8477 × (1.16 × ) − | 3.8232 × (9.02 × ) − | 4.9702 × (1.05 × ) − | 4.7740 × (8.53 × ) − | 2.7024 × (6.48 × ) − | 2.0657 × (1.59 × ) | |
+/−/≈ | 3/27/0 | 1/27/2 | 3/25/2 | 7/21/2 | 4/23/3 | 10/16/4 | 5/12/13 |
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
MaF1 | 5 | 14 | 4.6121 × (2.62 × ) − | 3.8590 × (5.59 × ) − | 1.2639 × (5.83 × ) + | 1.1759 × (1.79 × ) + | 1.1479 × (2.76 × ) + | 1.2406 × (1.32 × ) + | 1.1759 × (2.58 × ) + | 1.1310 × (2.42 × ) |
10 | 19 | 4.6405 × (2.30 × ) ≈ | 1.6880 × (1.45 × ) ≈ | 5.4529 × (3.20 × ) ≈ | 3.6437 × (4.81 × ) ≈ | 4.9805 × (6.87 × ) ≈ | 3.7271 × (1.76 × ) ≈ | 3.9699 × (7.47 × ) ≈ | 5.3666 × (8.60 × ) | |
15 | 24 | 5.5603 × (7.49 × ) + | 1.3253 × (4.46 × ) + | 7.2340 × (3.24 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 6.6561 × 4 (1.77 × ) + | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) | |
MaF2 | 5 | 14 | 1.7072 × (3.45 × ) − | 1.1656 × (4.02 × ) − | 1.8755 × (3.87 × ) − | 1.8917 × (3.82 × ) − | 1.8086 × (3.93 × ) − | 2.0240 × (1.09 × ) + | 1.8752 × (2.21 × ) − | 1.9223 × (2.51 × ) |
10 | 19 | 2.2275 × (5.87 × ) + | 1.7563 × (4.31 × ) − | 1.9355 × (6.66 × ) − | 1.7354 × (9.24 × ) − | 2.0830 × (5.63 × ) − | 2.2038 × (2.17 × ) ≈ | 2.0829 × (3.53 × ) − | 2.2006 × (3.13 × ) | |
15 | 24 | 1.8107 × (7.09 × ) − | 1.4632 × (1.16 × ) − | 1.7262 × (1.24 × ) − | 1.2074 × (1.72 × ) − | 1.7189 × (4.30 × ) − | 2.1004 × (3.40 × ) − | 1.8708 × (4.78 × ) − | 2.1259 × (2.18 × ) | |
MaF3 | 5 | 14 | 9.9755 × (2.26 × ) ≈ | 8.7352 × (2.22 × ) − | 3.9200 × (4.68 × ) − | 3.3797 × (4.66 × ) − | 9.9681 × (2.65 × ) ≈ | 8.9967 × (2.74 × ) ≈ | 9.9661 × (2.73 × ) ≈ | 9.9758 × (7.20 × ) |
10 | 19 | 2.1740 × (3.63 × ) − | 2.4378 × (3.77 × ) − | 8.8125 × (2.74 × ) − | 0.0000 × (0.00 × ) − | 0.0000 × (0.00 × ) − | 9.9903 × (1.33 × ) − | 9.9902 × (7.40 × ) − | 9.9962 × (1.43 × ) | |
15 | 24 | 2.2981 × (3.91 × ) − | 4.5466 × (3.70 × ) − | 8.9254 × (2.75 × ) − | 0.0000 × (0.00 × ) − | 0.0000 × (0.00 × ) − | 9.9969 × (1.73 × ) − | 9.9959 × (3.20 × ) − | 9.9994 × (6.73 × ) | |
MaF4 | 5 | 14 | 6.5321 × (1.38 × ) − | 4.8524 × (1.04 × ) − | 7.9295 × (3.59 × ) − | 8.5734 × (2.41 × ) − | 1.0895 × (5.42 × ) − | 7.7391 × (4.09 × ) − | 1.1445 × (3.81 × ) − | 1.1694 × (2.68 × ) |
10 | 19 | 2.5763 × (1.37 × ) + | 2.0149 × (3.88 × ) − | 2.3250 × (7.69 × ) + | 4.5033 × (6.23 × ) − | 4.9607 × (1.31 × ) ≈ | 2.7757 × (5.74 × ) + | 5.9247 × (1.40 × ) ≈ | 5.4507 × (3.97 × ) | |
15 | 24 | 2.0310 × (1.74 × ) + | 8.1605 × (2.18 × ) − | 5.6619 × (4.06 × ) + | 1.1446 × (3.57 × ) ≈ | 1.0256 × (4.59 × ) ≈ | 1.4041 × (7.65 × ) + | 2.9827 × (1.33 × ) ≈ | 9.3125 × (2.30 × ) | |
MaF5 | 5 | 14 | 7.8035 × (4.54 × ) + | 6.0920 × (5.02 × ) − | 7.6565 × (5.20 × ) ≈ | 7.9639 × (5.35 × ) + | 7.9666 × (2.83 × ) + | 8.0214 × (1.15 × ) + | 7.7892 × (5.41 × ) + | 7.6540 × (1.19 × ) |
10 | 19 | 9.6884 × (8.73 × ) + | 5.8180 × (1.15 × ) − | 9.3248 × (6.51 × ) + | 4.5637 × (3.35 × ) − | 9.5282 × (2.27 × ) + | 9.4684 × (4.90 × ) + | 8.3378 × (4.24 × ) − | 8.3647 × (3.10 × ) | |
15 | 24 | 9.9033 × (6.81 × ) + | 4.9608 × (8.16 × ) − | 9.8814 × (1.06 × ) + | 8.8308 × (1.04 × ) − | 9.8172 × (1.38 × ) + | 9.7544 × (3.33 × ) + | 8.7956 × (2.56 × ) ≈ | 8.7930 × (3.59 × ) | |
MaF6 | 5 | 14 | 1.2294 × (1.46 × ) − | 5.3971 × (5.00 × ) − | 1.3002 × (3.45 × ) + | 1.3000 × (4.03 × ) + | 1.2983 × (4.10 × ) ≈ | 1.2989 × (4.02 × ) ≈ | 1.2964 × (3.31 × ) ≈ | 1.2973 × (4.61 × ) |
10 | 19 | 1.5878 × (7.10 × ) − | 7.2840 × (3.74 × ) + | 0.0000 × (0.00 × ) − | 1.5109 × (3.69 × ) − | 6.2238 × (4.16 × ) ≈ | 1.0088 × (3.48 × ) + | 6.8132 × (4.00 × ) + | 4.5524 × (2.62 × ) | |
15 | 24 | 3.7735 × (1.69 × ) − | 6.7843 × (4.02 × ) ≈ | 0.0000 × (0.00 × ) − | 0.0000 × (0.00 × ) − | 1.0869 × (2.05 × ) − | 7.6645 × (3.86 × ) + | 2.5879 × (2.34 × ) − | 7.4059 × (2.31 × ) | |
MaF7 | 5 | 24 | 2.4135 × (4.02 × ) − | 1.3913 × (3.18 × ) − | 2.5850 × (5.25 × ) ≈ | 2.2738 × (1.27 × ) − | 2.3110 × (6.25 × ) − | 2.4795 × (1.51 × ) − | 2.5444 × (3.21 × ) − | 2.6077 × (2.75 × ) |
10 | 29 | 1.6975 × (4.03 × ) + | 1.0346 × (5.32 × ) − | 1.8894 × (1.31 × ) + | 1.1863 × (1.97 × ) − | 6.4935 × (1.94 × ) − | 1.2174 × (8.44 × ) − | 1.1235 × (2.10 × ) − | 1.5393 × (3.05 × ) | |
15 | 34 | 6.9636 × (1.52 × ) − | 2.4443 × (5.55 × ) − | 1.4706 × (7.54 × ) + | 3.3819 × (4.85 × ) − | 4.3577 × (3.11 × ) − | 6.7486 × (1.33 × ) − | 8.6084 × (2.96 × ) − | 1.1863 × (2.22 × ) | |
MaF8 | 5 | 2 | 1.0443 × (2.13 × ) − | 4.8073 × (1.47 × ) − | 1.1934 × (3.72 × ) − | 1.2380 × (2.55 × ) − | 1.2531 × (3.18 × ) − | 1.2522 × (8.78 × ) − | 1.2584 × (3.65 × ) ≈ | 1.2592 × (4.35 × ) |
10 | 2 | 9.2756 × (1.86 × ) − | 2.7814 × (7.32 × ) − | 1.0409 × (3.56 × ) − | 1.0992 × (1.07 × ) ≈ | 1.1062 × (9.13 × ) ≈ | 1.0665 × (1.27 × ) − | 1.1005 × (8.95 × ) ≈ | 1.1005 × (1.15 × ) | |
15 | 2 | 5.1133 × (2.33 × ) − | 9.6382 × (4.48 × ) − | 5.7226 × (2.98 × ) − | 6.0939 × (5.90 × ) − | 6.6263 × (7.65 × ) + | 5.8681 × (2.64 × ) − | 6.4957 × (1.89 × ) ≈ | 6.5171 × (1.13 × ) | |
MaF9 | 5 | 2 | 1.5920 × (4.41 × ) − | 9.8072 × (5.14 × ) − | 2.4131 × (4.13 × ) − | 2.2129 × (2.74 × ) − | 3.2379 × (8.96 × ) ≈ | 3.2550 × (1.43 × ) + | 3.2532 × (7.10 × ) + | 3.2427 × (1.01 × ) |
10 | 2 | 8.9235 × (1.42 × ) − | 4.5008 × (2.11 × ) − | 9.0017 × (2.06 × ) − | 4.3945 × (1.24 × ) − | 1.7446 × (2.93 × ) − | 1.5473 × (1.47 × ) − | 1.8576 × (1.20 × ) ≈ | 1.8572 × (1.21 × ) | |
15 | 2 | 8.3268 × (2.12 × ) − | 1.1835 × (1.57 × ) − | 8.3976 × (1.67 × ) − | 7.8030 × (2.67 × ) − | 1.2383 × (2.94 × ) ≈ | 1.2736 × (4.44 × ) − | 1.2938 × (4.12 × ) ≈ | 1.3010 × (4.09 × ) | |
MaF10 | 5 | 14 | 9.9739 × (3.30 × ) + | 7.9512 × (7.07 × ) − | 9.1315 × (2.72 × ) − | 9.1388 × (3.33 × ) − | 9.8879 × (1.71 × ) ≈ | 8.6430 × (4.35 × ) − | 9.9565 × (2.68 × ) ≈ | 9.9591 × (5.39 × ) |
10 | 19 | 9.9791 × (2.29 × ) ≈ | 6.1410 × (2.47 × ) − | 9.7668 × (4.61 × ) − | 9.9917 × (8.22 × ) + | 9.9636 × (1.06 × ) ≈ | 9.6461 × (4.01 × ) − | 9.9835 × (7.74 × ) ≈ | 9.9818 × (8.12 × ) | |
15 | 24 | 9.9938 × (2.49 × ) + | 8.6770 × (1.05 × ) − | 9.7960 × (3.58 × ) − | 9.9968 × (1.66 × ) + | 9.9900 × (5.05 × ) + | 9.9777 × (6.09 × ) − | 9.9839 × (4.74 × ) ≈ | 9.9846 × (6.07 × ) | |
+/−/≈ | 10/17/3 | 2/26/2 | 8/18/4 | 5/21/4 | 6/12/12 | 11/15/4 | 4/11/15 |
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
WFG1 | 5 | 14 | 1.6879 × (1.04 × ) − | 8.4047 × (7.93 × ) − | 2.7932 × (5.14 × ) − | 3.4056 × (5.90 × ) − | 1.7181 × (3.53 × ) − | 3.9556 × (7.17 × ) − | 1.2037 × (1.68 × ) − | 1.0612 × (1.51 × ) |
10 | 19 | 2.7284 × (3.52 × ) − | 4.3105 × (3.58 × ) − | 4.2434 × (8.32 × ) − | 3.5470 × (7.15 × ) − | 3.9092 × (6.16 × ) − | 4.3791 × (5.09 × ) − | 2.3283 × (6.33 × ) − | 1.8100 × (5.32 × ) | |
15 | 24 | 3.7314 × (5.29 × ) − | 6.8503 × (3.59 × ) − | 5.4497 × (8.73 × ) − | 4.1353 × (9.65 × ) − | 4.8966 × (8.79 × ) − | 4.8920 × (1.24 × ) − | 2.6991 × (6.09 × ) − | 2.2207 × (2.85 × ) | |
WFG2 | 5 | 14 | 1.7096 × (5.95 × ) − | 4.0120 × (1.60 × ) − | 1.4609 × (1.20 × ) − | 2.3480 × (1.77 × ) − | 1.6718 × (1.33 × ) − | 1.2269 × (4.17 × ) − | 1.1988 × (4.92 × ) − | 1.0821 × (3.25 × ) |
10 | 19 | 2.7613 × (3.52 × ) − | 8.7626 × (2.54 × ) − | 3.1333 × (5.85 × ) − | 6.4335 × (1.00 × ) − | 3.0931 × (1.89 × ) − | 2.5557 × (1.54 × ) − | 2.4792 × (1.31 × ) − | 1.8291 × (1.39 × ) | |
15 | 24 | 4.6028 × (7.80 × ) − | 5.3890 × (4.74 × ) − | 9.8919 × (2.92 × ) − | 8.0519 × (1.72 × ) − | 4.0059 × (4.11 × ) − | 3.8666 × (7.76 × ) − | 2.6561 × (1.34 × ) − | 2.3494 × (3.23 × ) | |
WFG3 | 5 | 14 | 4.7816 × (7.93 × ) ≈ | 3.0563 × (2.44 × ) ≈ | 4.2345 × (1.32 × ) + | 3.8317 × (5.46 × ) + | 6.5899 × (1.41 × ) − | 2.3907 × (2.25 × ) + | 6.0440 × (1.31 × ) − | 4.6603 × (5.86 × ) |
10 | 19 | 1.1414 × (2.82 × ) + | 2.6230 × (3.19 × ) ≈ | 9.0995 × (2.16 × ) + | 1.7089 × (4.31 × ) − | 2.1616 × (2.72 × ) − | 6.7516 × (1.04 × ) + | 2.0015 × (2.42 × ) − | 1.3803 × (1.44 × ) | |
15 | 24 | 8.8343 × (4.40 × ) + | 5.8458 × (4.73 × ) − | 1.3142 × (4.11 × ) + | 2.7530 × (5.88 × ) − | 2.8995 × (3.69 × ) − | 1.1996 × (1.55 × ) + | 2.6914 × (4.05 × ) − | 2.1122 × (2.98 × ) | |
WFG4 | 5 | 14 | 3.4865 × (6.25 × ) − | 1.9450 × (1.82 × ) − | 4.3914 × (1.37 × ) − | 3.3610 × (4.05 × ) − | 4.2041 × (1.36 × ) − | 3.6107 × (5.60 × ) − | 3.7270 × (8.00 × ) − | 3.2184 × (6.14 × ) |
10 | 19 | 1.2076 × (2.07 × ) − | 1.5911 × (7.62 × ) − | 1.6910 × (1.94 × ) − | 1.0553 × (1.51 × ) − | 1.4249 × (4.86 × ) − | 1.2323 × (1.85 × ) − | 9.7903 × (1.57 × ) − | 9.6320 × (2.24 × ) | |
15 | 24 | 2.1382 × (5.64 × ) − | 7.9585 × (7.55 × ) − | 4.3857 × (6.79 × ) − | 1.5059 × (1.85 × ) − | 2.1251 × (1.42 × ) − | 1.6988 × (1.33 × ) − | 1.4436 × (3.42 × ) − | 1.3992 × (4.20 × ) | |
WFG5 | 5 | 14 | 4.0436 × (5.52 × ) − | 5.7518 × (7.70 × ) − | 4.9843 × (1.40 × ) − | 3.9344 × (3.90 × ) − | 4.7974 × (7.81 × ) − | 4.0874 × (3.66 × ) − | 4.4547 × (6.82 × ) − | 3.6670 × (5.91 × ) |
10 | 19 | 1.2411 × (1.84 × ) − | 6.1110 × (7.10 × ) ≈ | 1.9677 × (4.08 × ) − | 1.1390 × (1.53 × ) − | 1.6906 × (6.26 × ) − | 1.3560 × (6.68 × ) − | 1.2222 × (4.16 × ) − | 1.0257 × (1.58 × ) | |
15 | 24 | 2.0035 × (5.31 × ) − | 1.9696 × (9.54 × ) − | 4.8177 × (1.46 × ) − | 1.5583 × (2.10 × ) − | 2.8805 × (2.43 × ) − | 1.9200 × (2.25 × ) − | 1.8096 × (7.35 × ) − | 1.4755 × (2.33 × ) | |
WFG6 | 5 | 14 | 4.4307 × (1.69 × ) − | 1.4079 × (9.69 × ) − | 5.4214 × (3.37 × ) − | 4.1629 × (1.42 × ) − | 5.5529 × (3.56 × ) − | 4.4503 × (2.58 × ) − | 4.9629 × (2.58 × ) − | 4.0251 × (2.25 × ) |
10 | 19 | 1.2027 × (4.56 × ) − | 5.6966 × (4.84 × ) − | 2.0388 × (8.15 × ) − | 1.1168 × (2.50 × ) − | 1.7499 × (9.49 × ) − | 1.3074 × (5.77 × ) − | 1.1484 × (5.35 × ) − | 1.0760 × (3.40 × ) | |
15 | 24 | 1.5688 × (1.02 × ) − | 8.7736 × (9.46 × ) ≈ | 3.7892 × (2.28 × ) − | 1.5028 × (2.64 × ) − | 2.5564 × (2.42 × ) − | 1.9234 × (2.86 × ) − | 1.5690 × (1.11 × ) − | 1.4595 × (2.50 × ) | |
WFG7 | 5 | 14 | 3.5370 × (7.85 × ) − | 1.0023 × (9.38 × ) − | 4.4150 × (2.04 × ) − | 3.2445 × (3.17 × ) − | 3.8391 × (7.99 × ) − | 3.4186 × (4.06 × ) − | 3.4372 × (6.61 × ) − | 3.1604 × (5.65 × ) |
10 | 19 | 1.2405 × (1.83 × ) − | 2.0352 × (2.06 × ) − | 2.6192 × (7.96 × ) − | 1.0307 × (1.52 × ) − | 1.2931 × (4.82 × ) − | 1.2469 × (7.02 × ) − | 9.6213 × (1.46 × ) ≈ | 9.6175 × (1.99 × ) | |
15 | 24 | 2.6539 × (3.19 × ) − | 1.4996 × (6.78 × ) − | 7.2836 × (1.22 × ) − | 1.6876 × (3.15 × ) − | 1.8703 × (1.92 × ) − | 1.9153 × (2.48 × ) − | 1.3936 × (2.58 × ) − | 1.3687 × (3.25 × ) | |
WFG8 | 5 | 14 | 7.0606 × (1.94 × ) − | 1.6805 × (4.10 × ) − | 8.1117 × (4.86 × ) − | 6.1329 × (7.03 × ) − | 7.5665 × (1.82 × ) − | 6.3778 × (9.83 × ) − | 7.0094 × (1.09 × ) − | 6.0005 × (3.45 × ) |
10 | 19 | 2.9083 × (3.54 × ) − | 8.3831 × (1.89 × ) − | 4.4566 × (3.02 × ) − | 2.3124 × (1.04 × ) − | 2.9543 × (9.12 × ) − | 1.7865 × (2.62 × ) − | 2.2224 × (4.60 × ) − | 1.4763 × (2.26 × ) | |
15 | 24 | 5.2552 × (1.03 × ) ≈ | 1.7779 × (3.46 × ) − | 9.8270 × (6.85 × ) − | 4.1964 × (5.71 × ) ≈ | 6.0122 × (3.44 × ) ≈ | 3.2768 × (7.39 × ) + | 6.3542 × (3.78 × ) − | 4.9284 × (1.58 × ) | |
WFG9 | 5 | 14 | 4.3455 × (6.95 × ) − | 6.3084 × (2.68 × ) − | 4.8013 × (1.83 × ) − | 3.8708 × (1.11 × ) − | 4.4516 × (1.40 × ) − | 4.0339 × (7.93 × ) − | 4.2105 × (1.12 × ) − | 3.7320 × (1.04 × ) |
10 | 19 | 1.9231 × (4.06 × ) − | 1.3237 × (1.26 × ) − | 2.5773 × (3.65 × ) − | 1.3674 × (5.77 × ) − | 1.6376 × (1.57 × ) − | 1.5029 × (6.31 × ) − | 1.2111 × (4.62 × ) − | 1.0912 × (4.55 × ) | |
15 | 24 | 3.4744 × (1.87 × ) − | 5.0539 × (7.16 × ) − | 5.0051 × (6.87 × ) − | 2.7106 × (3.24 × ) − | 2.5771 × (1.51 × ) − | 2.5878 × (3.32 × ) − | 1.9573 × (1.53 × ) − | 1.7683 × (1.28 × ) | |
+/−/≈ | 2/23/2 | 0/23/4 | 3/24/0 | 1/25/1 | 0/26/1 | 4/23/0 | 0/26/1 |
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
WFG1 | 5 | 14 | 9.9729 × (4.79 × ) + | 7.5701 × (1.13 × ) − | 9.2224 × (3.02 × ) − | 9.2482 × (3.82 × ) − | 9.8940 × (1.93 × ) ≈ | 8.6548 × (4.29 × ) − | 9.9357 × (1.06 × ) − | 9.9624 × (4.40 × ) |
10 | 19 | 9.9880 × (4.02 × ) + | 7.7590 × (2.05 × ) − | 9.7484 × (3.39 × ) − | 9.9692 × (1.13 × ) − | 9.9886 × (6.89 × ) + | 9.8202 × (3.12 × ) − | 9.9846 × (6.07 × ) ≈ | 9.9805 × (7.91 × ) | |
15 | 24 | 9.9938 × (2.46 × ) + | 8.1670 × (1.42 × ) − | 9.9112 × (2.96 × ) − | 9.9966 × (2.22 × ) + | 9.9919 × (5.06 × ) + | 9.9779 × (4.44 × ) − | 9.9846 × (5.37 × ) ≈ | 9.9850 × (8.21 × ) | |
WFG2 | 5 | 14 | 9.9385 × (1.63 × ) + | 9.4873 × (1.92 × ) − | 9.6991 × (4.15 × ) − | 9.9260 × (1.75 × ) + | 9.8210 × (2.76 × ) − | 9.8640 × (1.93 × ) ≈ | 9.8536 × (2.11 × ) − | 9.8743 × (1.98 × ) |
10 | 19 | 9.9456 × (2.12 × ) + | 9.7842 × (1.32 × ) − | 9.8304 × (2.92 × ) − | 9.9771 × (7.09 × ) + | 9.9329 × (1.21 × ) + | 9.9215 × (1.39 × ) ≈ | 9.9307 × (2.10 × ) + | 9.9216 × (1.81 × ) | |
15 | 24 | 9.9446 × (2.16 × ) + | 9.5815 × (1.77 × ) − | 9.7537 × (9.91 × ) − | 9.9633 × (1.29 × ) + | 9.9418 × (1.55 × ) + | 9.9488 × (1.08 × ) + | 9.9345 × (3.26 × ) ≈ | 9.9217 × (3.01 × ) | |
WFG3 | 5 | 14 | 1.2313 × (2.34 × ) ≈ | 1.3726 × (6.71 × ) ≈ | 7.9633 × (3.04 × ) − | 1.3248 × (2.30 × ) ≈ | 2.9777 × (2.79 × ) − | 1.3689 × (2.05 × ) ≈ | 3.3277 × (2.60 × ) − | 1.3093 × (1.75 × ) |
10 | 19 | 1.0038 × (3.09 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 4.0794 × (1.39 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) | |
15 | 24 | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) | |
WFG4 | 5 | 14 | 7.8150 × (3.53 × ) − | 2.7809 × (2.17 × ) − | 7.2951 × (5.59 × ) − | 7.8987 × (2.33 × ) − | 7.3936 × (7.22 × ) − | 7.7712 × (3.86 × ) − | 7.6398 × (5.03 × ) − | 7.9304 × (3.16 × ) |
10 | 19 | 8.9006 × (1.29 × ) − | 1.1465 × (3.80 × ) − | 8.2631 × (9.69 × ) − | 9.4904 × (2.03 × ) − | 8.3550 × (9.08 × ) − | 9.0372 × (4.48 × ) − | 9.5702 × (2.44 × ) + | 9.5320 × (5.39 × ) | |
15 | 24 | 9.2280 × (1.76 × ) − | 1.6712 × (1.57 × ) − | 8.3298 × (2.58 × ) − | 9.7464 × (3.52 × ) − | 8.2140 × (1.34 × ) − | 9.1813 × (6.86 × ) − | 9.8614 × (9.74 × ) + | 9.8307 × (5.42 × ) | |
WFG5 | 5 | 14 | 7.3641 × (2.74 × ) − | 5.9047 × (4.59 × ) − | 6.7534 × (7.28 × ) − | 7.4162 × (2.72 × ) − | 7.0602 × (4.99 × ) − | 7.3525 × (3.38 × ) − | 7.2390 × (4.27 × ) − | 7.5300 × (2.97 × ) |
10 | 19 | 8.4977 × (5.61 × ) − | 4.8967 × (3.06 × ) − | 7.6801 × (1.44 × ) − | 8.8577 × (2.36 × ) − | 7.9606 × (7.04 × ) − | 8.5903 × (4.45 × ) − | 8.8579 × (2.02 × ) − | 9.0141 × (1.28 × ) | |
15 | 24 | 8.7862 × (1.01 × ) − | 2.2781 × (2.79 × ) − | 7.8038 × (3.15 × ) − | 9.0388 × (2.08 × ) − | 7.5518 × (1.07 × ) − | 8.7299 × (3.09 × ) − | 8.9638 × (2.99 × ) − | 9.1473 × (1.00 × ) | |
WFG6 | 5 | 14 | 7.1109 × (1.12 × ) − | 2.0909 × (9.44 × ) − | 6.5917 × (1.82 × ) − | 7.3093 × (1.06 × ) ≈ | 6.8227 × (1.56 × ) − | 7.1647 × (1.75 × ) − | 7.0659 × (1.33 × ) − | 7.3125 × (1.50 × ) |
10 | 19 | 8.3944 × (1.14 × ) − | 3.7260 × (1.97 × ) − | 7.5420 × (3.52 × ) − | 8.7926 × (1.21 × ) + | 7.8060 × (1.81 × ) − | 8.4265 × (2.35 × ) − | 8.8029 × (1.79 × ) + | 8.6612 × (1.85 × ) | |
15 | 24 | 8.7588 × (1.13 × ) + | 4.1887 × (2.13 × ) − | 7.7995 × (4.51 × ) − | 9.0298 × (2.09 × ) + | 7.7459 × (1.38 × ) − | 8.4469 × (1.84 × ) ≈ | 8.6505 × (4.74 × ) ≈ | 8.5845 × (2.92 × ) | |
WFG7 | 5 | 14 | 7.8156 × (3.89 × ) − | 4.2979 × (1.33 × ) − | 7.3228 × (8.15 × ) − | 7.9954 × (1.12 × ) + | 7.6415 × (4.30 × ) − | 7.9277 × (1.76 × ) − | 7.8435 × (3.56 × ) − | 7.9760 × (3.31 × ) |
10 | 19 | 9.0354 × (1.29 × ) − | 6.7282 × (1.41 × ) − | 8.2953 × (3.98 × ) − | 9.5925 × (9.79 × ) ≈ | 8.7871 × (1.03 × ) − | 9.2998 × (3.85 × ) − | 9.6340 × (2.77 × ) + | 9.5956 × (3.66 × ) | |
15 | 24 | 9.7311 × (4.01 × ) − | 2.5560 × (2.54 × ) − | 8.3713 × (4.21 × ) − | 9.7966 × (3.53 × ) − | 8.9319 × (1.65 × ) − | 9.3806 × (5.73 × ) − | 9.9137 × (4.88 × ) + | 9.9028 × (1.29 × ) | |
WFG8 | 5 | 14 | 6.1886 × (1.06 × ) − | 7.2921 × (7.56 × ) − | 6.0607 × (1.52 × ) − | 6.8035 × (4.13 × ) − | 6.0196 × (1.26 × ) − | 6.6704 × (3.48 × ) − | 6.3234 × (6.33 × ) − | 6.8976 × (2.81 × ) |
10 | 19 | 8.5186 × (1.64 × ) − | 2.6028 × (1.24 × ) − | 7.1378 × (2.35 × ) − | 8.2294 × (6.10 × ) − | 5.9263 × (2.46 × ) − | 8.2116 × (2.60 × ) − | 7.3630 × (7.71 × ) − | 8.9386 × (1.23 × ) | |
15 | 24 | 9.1743 × (6.21 × ) − | 1.8712 × (5.43 × ) − | 7.2178 × (5.02 × ) − | 9.0189 × (6.90 × ) − | 8.7673 × (8.16 × ) − | 8.6506 × (2.08 × ) − | 8.9671 × (6.03 × ) − | 9.3230 × (2.65 × ) | |
WFG9 | 5 | 14 | 7.1726 × (4.39 × ) − | 5.7438 × (1.18 × ) − | 6.9840 × (6.08 × ) − | 7.4910 × (4.64 × ) ≈ | 7.2015 × (7.50 × ) − | 7.4269 × (4.35 × ) − | 7.3180 × (6.41 × ) − | 7.5112 × (6.66 × ) |
10 | 19 | 8.4119 × (5.81 × ) − | 6.9320 × (8.26 × ) − | 7.9149 × (1.22 × ) − | 8.6672 × (3.58 × ) − | 7.9195 × (5.95 × ) − | 8.5381 × (8.84 × ) − | 8.9091 × (3.76 × ) − | 9.1675 × (8.03 × ) | |
15 | 24 | 8.9521 × (1.22 × ) − | 6.0997 × (2.11 × ) − | 8.1071 × (1.60 × ) − | 8.8163 × (1.14 × ) − | 7.9180 × (1.41 × ) − | 8.4359 × (3.81 × ) − | 8.9479 × (4.57 × ) − | 9.2016 × (4.61 × ) | |
+/−/≈ | 7/17/3 | 0/24/3 | 0/25/2 | 7/14/6 | 4/20/3 | 1/20/6 | 6/15/6 |
4.2.2. Comparison Results on MaF Test Problems
4.2.3. Comparison Results on WFG Test Problems
4.2.4. Comparison Results on Real-World Problems
4.3. Validation of Proposed Strategies
4.3.1. Validation of Cooperative GPD and RV Strategy
Problem | M | D | ANSGAIII | MaOEAIGD | DEAGNG | LMPFE | TSDGPD | RVEAiGNG | MultiGPO | GPDARVC |
---|---|---|---|---|---|---|---|---|---|---|
Ma_RW1 | 4 | 7 | 3.0062 × (9.12 × ) − | 9.8681 × (5.55 × ) − | 2.5086 × (1.93 × ) − | 3.0006 × (9.72 × ) − | 3.2535 × (3.36 × ) − | 3.0318 × (9.07 × ) − | 3.2168 × (2.14 × ) − | 3.3675 × (1.88 × ) |
Ma_RW2 | 4 | 4 | 3.7618 × (3.15 × ) + | 2.4753 × (3.05 × ) − | 3.8277 × (6.55 × ) + | 3.8857 × (6.32 × ) + | 3.1537 × (2.60 × ) − | 3.8650 × (1.93 × ) + | 3.6983 × (4.73 × ) ≈ | 3.6840 × (2.76 × ) |
Ma_RW3 | 5 | 2 | 4.8459 × (8.26 × ) + | 8.0463 × (1.14 × ) + | 3.4897 × (5.40 × ) + | 7.3549 × (6.47 × ) + | 6.5190 × (6.71 × ) + | 2.8039 × (3.45 × ) + | 3.3680 × (5.15 × ) ≈ | 4.2021 × (2.48 × ) |
Ma_RW4 | 5 | 3 | 3.1830 × (8.96 × ) − | 3.9165 × (3.70 × ) − | 3.2927 × (8.65 × ) − | 3.3882 × (5.37 × ) − | 3.4034 × (4.87 × ) − | 3.3191 × (1.11 × ) − | 3.4164 × (5.49 × ) − | 3.4504 × (4.81 × ) |
Ma_RW5 | 6 | 7 | 3.2322 × (1.62 × ) − | 4.5537 × (1.06 × ) − | 3.0394 × (4.77 × ) − | 4.0883 × (9.97 × ) + | 4.2664 × (3.20 × ) + | 3.1140 × (1.71 × ) − | 3.1904 × (1.83 × ) − | 3.5359 × (9.88 × ) |
Ma_RW6 | 7 | 3 | 1.1146 × (1.31 × ) − | 7.2504 × (1.36 × ) − | 7.8898 × (1.24 × ) − | 1.1674 × (1.27 × ) − | 1.2924 × (1.27 × ) ≈ | 1.2808 × (8.85 × ) ≈ | 1.2569 × (7.63 × ) ≈ | 1.2942 × (6.15 × ) |
+/−/≈ | 2/4/0 | 1/5/0 | 2/4/0 | 3/3/0 | 2/3/1 | 2/3/1 | 0/2/4 |
4.3.2. Validation of Adjusted Reference Vector Selection
4.3.3. Parameter Sensitivity Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, M.; Li, L.; Zhou, M.; Li, J.; Abusorrah, A.; Sedraoui, K. A bi-population cooperative optimization algorithm assisted by an autoencoder for medium-scale expensive problems. IEEE/CAA J. Autom. Sin. 2022, 9, 1952–1966. [Google Scholar] [CrossRef]
- Zhou, M.; Cui, M.; Xu, D.; Zhu, S.; Zhao, Z.; Abusorrah, A. Evolutionary optimization methods for high-dimensional expensive problems: A survey. IEEE/CAA J. Autom. Sin. 2024, 11, 1092–1105. [Google Scholar] [CrossRef]
- Lei, Z.; Gao, S.; Zhang, Z.; Zhou, M.; Cheng, J. MO4: A many-objective evolutionary algorithm for protein structure prediction. IEEE Trans. Evol. Comput. 2022, 26, 417–430. [Google Scholar] [CrossRef]
- Lu, Z.; Sreekumar, G.; Goodman, E.; Banzhaf, W.; Deb, K.; Boddeti, V.N. Neural architecture transfer. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 2971–2989. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Sun, N.; Lv, S.; Chen, K.; Fang, W.; Cao, L. Research progress on intelligent optimization techniques for energy-efficient design of ship hull forms. J. Membr. Comput. 2024, 1–17. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, L.; Goodman, E.D. Evolutionary multi-objective automatic clustering enhanced with quality metrics and ensemble strategy. Knowl.-Based Syst. 2020, 188, 105018. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhu, S. Kernel-based multiobjective clustering algorithm with automatic attribute weighting. Soft Comput. 2018, 22, 3685–3709. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, L.; Goodman, E.; Deb, K.; Lu, Z. A general framework for enhancing relaxed Pareto dominance methods in evolutionary many-objective optimization. Nat. Comput. 2023, 22, 287–313. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef]
- Sato, H.; Aguirre, H.E.; Tanaka, K. Controlling dominance area of solutions and its impact on the performance of MOEAs. In Proceedings of the International Conference on Evolutionary Multi-Criterion Optimization, Matsushima, Japan, 5–8 March 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 5–20. [Google Scholar]
- Zhu, C.; Xu, L.; Goodman, E.D. Generalization of Pareto-optimality for many-objective evolutionary optimization. IEEE Trans. Evol. Comput. 2016, 20, 299–315. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Liu, J.; Liu, Y.; Tan, S. A dual distance dominance based evolutionary algorithm with selection-replacement operator for many-objective optimization. Expert Syst. Appl. 2024, 237, 121244. [Google Scholar] [CrossRef]
- Palakonda, V.; Kang, J.M.; Jung, H. An adaptive neighborhood based evolutionary algorithm with pivot-solution based selection for multi-and many-objective optimization. Inf. Sci. 2022, 607, 126–152. [Google Scholar] [CrossRef]
- Li, M.; Yang, S.; Liu, X. Shift-based density estimation for Pareto-based algorithms in many-objective optimization. IEEE Trans. Evol. Comput. 2014, 18, 348–365. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, Y.; Jin, Y. A knee point-driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2015, 19, 761–776. [Google Scholar] [CrossRef]
- Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: Solving problems with box constraints. IEEE Trans. Evol. Comput. 2014, 18, 577–601. [Google Scholar] [CrossRef]
- Xu, X.; Cheng, D.; Wang, D.; Li, Q.; Yu, F. An Improved NSGA-III with a Comprehensive Adaptive Penalty Scheme for Many-Objective Optimization. Symmetry 2024, 16, 1289. [Google Scholar] [CrossRef]
- Li, K.; Deb, K.; Zhang, Q.; Kwong, S. An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 2015, 19, 694–716. [Google Scholar] [CrossRef]
- Lin, Q.; Li, J.; Liu, S.; Ma, L.; Li, J.; Chen, J. An adaptive two-stage evolutionary algorithm for large-scale continuous multi-objective optimization. Swarm Evol. Comput. 2023, 77, 101235. [Google Scholar] [CrossRef]
- Wang, X.; Xie, Z.; Zhou, X.; Gu, X. A two-stage adaptive reference direction guided evolutionary algorithm with modified dominance relation for many-objective optimization. Swarm Evol. Comput. 2023, 78, 101272. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, L.; Goodman, E.D.; Lu, Z. A new many-objective evolutionary algorithm based on generalized Pareto dominance. IEEE Trans. Cybern. 2022, 52, 7776–7790. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jin, Y.; Heiderich, M.; Rodemann, T. Coordinated adaptation of reference vectors and scalarizing functions in evolutionary many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 2022, 53, 763–775. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.; Dong, Y.; Huang, Y. A solution potential-based adaptation reference vector evolutionary algorithm for many-objective optimization. Swarm Evol. Comput. 2024, 84, 101451. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 2007, 11, 712–731. [Google Scholar] [CrossRef]
- Wu, M.; Li, K.; Kwong, S.; Zhang, Q. Evolutionary many-objective optimization based on adversarial decomposition. IEEE Trans. Cybern. 2018, 50, 753–764. [Google Scholar] [CrossRef]
- Liu, S.; Zheng, J.; Lin, Q.; Tan, K.C. Evolutionary multi and many-objective optimization via clustering for environmental selection. Inf. Sci. 2021, 578, 930–949. [Google Scholar] [CrossRef]
- Jiang, S.; Yang, S. A strength Pareto evolutionary algorithm based on reference direction for multiobjective and many-objective optimization. IEEE Trans. Evol. Comput. 2017, 21, 329–346. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Wang, K.; Yang, S. A strength pareto evolutionary algorithm based on adaptive reference points for solving irregular fronts. Inf. Sci. 2023, 626, 658–693. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Dai, Y.; Chen, L.; Chen, H.; Ruiz, R. An incremental learning evolutionary algorithm for many-objective optimization with irregular Pareto fronts. Inf. Sci. 2023, 642, 119115. [Google Scholar] [CrossRef]
- Beume, N.; Naujoks, B.; Emmerich, M. SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 2007, 181, 1653–1669. [Google Scholar] [CrossRef]
- Bader, J.; Zitzler, E. HypE: An algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 2011, 19, 45–76. [Google Scholar] [CrossRef]
- Liu, Y.; Ishibuchi, H.; Masuyama, N.; Nojima, Y. Adapting reference vectors and scalarizing functions by growing neural gas to handle irregular Pareto fronts. IEEE Trans. Evol. Comput. 2019, 24, 439–453. [Google Scholar] [CrossRef]
- Chao, T.; Wang, S.; Wang, S.; Yang, M. A many-objective evolutionary algorithm combining simplified hypervolume and a method for reference point sampling based on angular relationship. Appl. Soft Comput. 2024, 163, 111881. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Cheng, F.; Jin, Y. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans. Evol. Comput. 2017, 22, 609–622. [Google Scholar] [CrossRef]
- Shang, K.; Ishibuchi, H. A new hypervolume-based evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 2020, 24, 839–852. [Google Scholar] [CrossRef]
- Cao, J.; Yang, L.; Li, K.; Zhang, Y.; Tian, J.; Wang, D. An enhanced diversity indicator-based many-objective evolutionary algorithm with shape-conforming convergence metric. Appl. Soft Comput. 2024, 166, 112161. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, D.; Sun, J.; Jin, Y. A many-objective evolutionary algorithm using a one-by-one selection strategy. IEEE Trans. Cybern. 2017, 47, 2689–2702. [Google Scholar] [CrossRef]
- Liang, Z.; Hu, K.; Ma, X.; Zhu, Z. A many-objective evolutionary algorithm based on a two-round selection strategy. IEEE Trans. Cybern. 2021, 51, 1417–1429. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Cao, J.; Li, K.; Wang, D. A many-objective evolutionary algorithm based on reference vector guided selection and two diversity and convergence enhancement strategies. Appl. Soft Comput. 2024, 154, 111369. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, J.; Yang, W.; Tan, S. A cascading elimination-based evolutionary algorithm with variable classification mutation for many-objective optimization. Inf. Sci. 2024, 662, 120200. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, H.; Zhang, W.; Cui, Z. Cooperative-competitive two-stage game mechanism assisted many-objective evolutionary algorithm. Inf. Sci. 2023, 647, 119559. [Google Scholar] [CrossRef]
- Shen, J.; Wang, P.; Dong, H.; Li, J.; Wang, W. A multistage evolutionary algorithm for many-objective optimization. Inf. Sci. 2022, 589, 531–549. [Google Scholar] [CrossRef]
- Ming, F.; Gong, W.; Wang, L. A two-stage evolutionary algorithm with balanced convergence and diversity for many-objective optimization. IEEE Trans. Syst. Man Cybern. Syst. 2022, 52, 6222–6234. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, S.; Pedrycz, W.; Feng, G. ACDB-EA: Adaptive convergence-diversity balanced evolutionary algorithm for many-objective optimization. Swarm Evol. Comput. 2022, 75, 101145. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, L. Many-objective fuzzy centroids clustering algorithm for categorical data. Expert Syst. Appl. 2018, 96, 230–248. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, L.; Goodman, E.D. Hierarchical Topology-Based Cluster Representation for Scalable Evolutionary Multiobjective Clustering. IEEE Trans. Cybern. 2022, 52, 9846–9860. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Li, L.; Zhou, M.; Abusorrah, A. Surrogate-assisted autoencoder-embedded evolutionary optimization algorithm to solve high-dimensional expensive problems. IEEE Trans. Evol. Comput. 2022, 26, 676–689. [Google Scholar] [CrossRef]
- Cai, X.; Mei, Z.; Fan, Z. A decomposition-based many-objective evolutionary algorithm with two types of adjustments for direction vectors. IEEE Trans. Cybern. 2018, 48, 2335–2348. [Google Scholar] [CrossRef] [PubMed]
- Suresh, A.; Deb, K. Machine learning based prediction of new Pareto-optimal solutions from pseudo-weights. IEEE Trans. Evol. Comput. 2024, 28, 1351–1365. [Google Scholar] [CrossRef]
- Zhu, C.; Cai, X.; Fan, Z.; Sulaman, M. A two-phase many-objective evolutionary algorithm with penalty based adjustment for reference lines. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2161–2168. [Google Scholar]
- Qi, Y.; Ma, X.; Liu, F.; Jiao, L.; Sun, J.; Wu, J. MOEA/D with adaptive weight adjustment. Evol. Comput. 2014, 22, 231–264. [Google Scholar] [CrossRef]
- Blank, J.; Deb, K.; Dhebar, Y.; Bandaru, S.; Seada, H. Generating well-spaced points on a unit simplex for evolutionary many-objective optimization. IEEE Trans. Evol. Comput. 2020, 25, 48–60. [Google Scholar] [CrossRef]
- Deb, K.; do Val Lopes, C.L.; Martins, F.V.C.; Wanner, E.F. Identifying Pareto Fronts Reliably Using a Multistage Reference-Vector-Based Framework. IEEE Trans. Evol. Comput. 2024, 28, 252–266. [Google Scholar] [CrossRef]
- Tian, Y.; Cheng, R.; Zhang, X.; Jin, Y. PlatEMO: A MATLAB platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 2017, 12, 73–87. [Google Scholar] [CrossRef]
- Sun, Y.; Yen, G.G.; Yi, Z. IGD indicator-based evolutionary algorithm for many-objective optimization problems. IEEE Trans. Evol. Comput. 2019, 23, 173–187. [Google Scholar] [CrossRef]
- Tian, Y.; Si, L.; Zhang, X.; Tan, K.C.; Jin, Y. Local model-based Pareto front estimation for multiobjective optimization. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 623–634. [Google Scholar] [CrossRef]
- Wang, H.; Wei, Z.; Yu, G.; Wang, S.; Wu, J.; Liu, J. A two-stage many-objective evolutionary algorithm with dynamic generalized Pareto dominance. Int. J. Intell. Syst. 2022, 37, 9833–9862. [Google Scholar] [CrossRef]
- Liu, Q.; Jin, Y.; Heiderich, M.; Rodemann, T.; Yu, G. An adaptive reference vector-guided evolutionary algorithm using growing neural gas for many-objective optimization of irregular problems. IEEE Trans. Cybern. 2022, 52, 2698–2711. [Google Scholar] [CrossRef]
- Palakonda, V.; Kang, J.M.; Jung, H. Benchmarking Real-World Many-Objective Problems: A Problem Suite With Baseline Results. IEEE Access 2024, 12, 49275–49290. [Google Scholar] [CrossRef]
- Palakonda, V.; Kang, J.M. Many-Objective Real-World Engineering Problems: A Comparative Study of State-of-the-Art Algorithms. IEEE Access 2023, 11, 111636–111654. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, H.; Chen, Z.; Liu, S.; Yang, H.; Zhao, H. A Multi-Population Based Evolutionary Algorithm for Many-Objective Recommendations. IEEE Trans. Emerg. Top. Comput. Intell. 2024, 8, 1969–1982. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, B.; Waqas, M.; Tu, S.; Han, Z. A hybrid many-objective optimization algorithm for task offloading and resource allocation in multi-server mobile edge computing networks. IEEE Trans. Serv. Comput. 2023, 16, 3101–3114. [Google Scholar] [CrossRef]
Problem | M | D | HV | IGD+ | ||
---|---|---|---|---|---|---|
MultiGPO_RV | MultiGPO | MultiGPO_RV | MultiGPO | |||
DTLZ1 | 5 | 9 | 9.7957 × (4.26 × ) + | 9.7613 × (5.21 × ) | 3.7875 × (7.35 × ) − | 3.7186 × (3.94 × ) |
10 | 14 | 9.9968 × (5.99 × ) + | 9.9897 × (6.31 × ) | 8.2646 × (9.27 × ) − | 7.3197 × (1.64 × ) | |
DTLZ2 | 5 | 14 | 8.1147 × (4.91 × ) + | 8.0238 × (1.56 × ) | 6.4032 × (1.56 × ) + | 7.2676 × (9.48 × ) |
10 | 19 | 9.7023 × (2.36 × ) + | 9.5936 × (1.09 × ) | 1.7666 × (3.08 × ) + | 1.7985 × (2.26 × ) | |
DTLZ3 | 5 | 14 | 7.9170 × (9.61 × ) − | 7.9903 × (5.47 × ) | 7.9411 × (7.69 × ) ≈ | 7.5985 × (4.31 × ) |
10 | 19 | 9.6339 × (6.88 × ) + | 9.3478 × (2.28 × ) | 1.8541 × (7.87 × ) + | 2.1157 × (2.17 × ) | |
DTLZ4 | 5 | 14 | 8.1151 × (2.92 × ) + | 8.0448 × (1.66 × ) | 6.3928 × (1.53 × ) + | 7.1703 × (9.50 × ) |
10 | 19 | 9.7021 × (2.63 × ) + | 9.6239 × (8.93 × ) | 1.7579 × (4.26 × ) + | 1.7873 × (1.97 × ) | |
DTLZ5 | 5 | 14 | 1.0449 × (4.85 × ) ≈ | 1.0154 × (4.95 × ) | 4.3883 × (7.30 × ) + | 5.0725 × (1.18 × ) |
10 | 19 | 8.7696 × (2.12 × ) ≈ | 8.6196 × (3.13 × ) | 8.6392 × (1.95 × ) + | 1.0025 × (1.87 × ) | |
DTLZ6 | 5 | 14 | 1.0290 × (5.19 × ) + | 9.7489 × (6.38 × ) | 4.9008 × (1.04 × ) + | 6.7124 × (1.76 × ) |
10 | 19 | 9.0892 × (2.61 × ) ≈ | 8.9286 × (7.10 × ) | 1.0316 × (2.83 × ) ≈ | 1.0211 × (2.30 × ) | |
DTLZ7 | 5 | 24 | 2.5228 × (6.37 × ) ≈ | 2.5318 × (3.91 × ) | 2.0991 × (1.41 × ) ≈ | 1.4859 × (2.83 × ) |
10 | 29 | 1.2967 × (1.59 × ) ≈ | 1.1874 × (2.20 × ) | 6.7916 × (8.51 × ) + | 7.2405 × (7.40 × ) | |
MaF1 | 5 | 14 | 1.1724 × (2.69 × ) ≈ | 1.1759 × (2.58 × ) | 8.0030 × (1.75 × ) ≈ | 7.9782 × (1.83 × ) |
10 | 19 | 2.4953 × (4.43 × ) ≈ | 3.9699 × (7.47 × ) | 1.6657 × (8.11 × ) − | 1.6563 × (1.21 × ) | |
MaF2 | 5 | 14 | 1.9181 × (1.81 × ) + | 1.8752 × (2.21 × ) | 5.2287 × (1.12 × ) + | 5.5021 × (9.87 × ) |
10 | 19 | 2.2185 × (2.93 × ) + | 2.0829 × (3.53 × ) | 1.1269 × (4.54 × ) + | 1.1747 × (4.81 × ) | |
MaF3 | 5 | 14 | 9.9617 × (2.20 × ) − | 9.9661 × (2.73 × ) | 3.2517 × (1.82 × ) + | 3.7722 × (1.24 × ) |
10 | 19 | 9.9910 × (7.12 × ) ≈ | 9.9902 × (7.40 × ) | 2.1471 × (2.12 × ) + | 2.8817 × (4.44 × ) | |
MaF4 | 5 | 14 | 1.1050 × (5.30 × ) − | 1.1445 × (3.81 × ) | 6.5158 × (4.85 × ) − | 6.1668 × (3.32 × ) |
10 | 19 | 7.1109 × (2.01 × ) + | 5.9247 × (1.40 × ) | 9.2043 × (8.02 × ) ≈ | 9.0576 × (4.20 × ) | |
MaF5 | 5 | 14 | 7.6460 × (2.49 × ) − | 7.7892 × (5.41 × ) | 4.5095 × (5.02 × ) − | 4.2646 × (1.49 × ) |
10 | 19 | 8.3359 × (3.66 × ) ≈ | 8.3378 × (4.24 × ) | 1.2346 × (1.26 × ) ≈ | 1.2289 × (8.87 × ) | |
MaF6 | 5 | 14 | 1.2950 × (4.39 × ) ≈ | 1.2964 × (3.31 × ) | 1.1968 × (6.96 × ) − | 1.1450 × (7.02 × ) |
10 | 19 | 7.2304 × (3.72 × ) ≈ | 6.8132 × (4.00 × ) | 7.7691 × (1.02 × ) ≈ | 8.5688 × (1.06 × ) | |
MaF7 | 5 | 24 | 2.5643 × (2.73 × ) + | 2.5444 × (3.21 × ) | 1.5877 × (3.95 × ) ≈ | 1.4972 × (3.28 × ) |
10 | 29 | 1.3458 × (1.66 × ) + | 1.1235 × (2.10 × ) | 6.7943 × (5.75 × ) + | 7.2159 × (1.30 × ) | |
MaF8 | 5 | 2 | 1.2478 × (4.67 × ) ≈ | 1.2584 × (3.65 × ) | 5.3530 × (2.84 × ) ≈ | 4.6910 × (7.83 × ) |
10 | 2 | 1.0978 × (9.92 × ) ≈ | 1.1005 × (8.95 × ) | 6.3002 × (7.59 × ) ≈ | 6.2770 × (8.61 × ) | |
MaF9 | 5 | 2 | 3.2424 × (2.67 × ) − | 3.2532 × (7.10 × ) | 5.3077 × (4.51 × ) ≈ | 5.1864 × (4.82 × ) |
10 | 2 | 1.8569 × (1.48 × ) ≈ | 1.8576 × (1.20 × ) | 7.2281 × (3.44 × ) ≈ | 7.2169 × (3.68 × ) | |
MaF10 | 5 | 14 | 5.9066 × (7.86 × ) − | 9.9565 × (2.68 × ) | 9.8594 × (2.10 × ) − | 1.2150 × (1.30 × ) |
10 | 19 | 7.2468 × (7.59 × ) − | 9.9835 × (7.74 × ) | 8.5126 × (1.97 × ) − | 2.2751 × (7.09 × ) | |
WFG1 | 5 | 14 | 9.7518 × (3.08 × ) − | 9.9357 × (1.06 × ) | 1.4498 × (4.70 × ) ≈ | 1.2037 × (1.68 × ) |
10 | 19 | 9.9740 × (6.59 × ) − | 9.9846 × (6.07 × ) | 1.8820 × (1.36 × ) ≈ | 2.3283 × (6.33 × ) | |
WFG2 | 5 | 14 | 9.8416 × (2.26 × ) − | 9.8536 × (2.11 × ) | 1.0870 × (3.80 × ) + | 1.1988 × (4.92 × ) |
10 | 19 | 9.8845 × (2.30 × ) − | 9.9307 × (2.10 × ) | 1.7426 × (1.03 × ) + | 2.4792 × (1.31 × ) | |
WFG3 | 5 | 14 | 1.3404 × (1.65 × ) + | 3.3277 × (2.60 × ) | 3.7931 × (4.14 × ) + | 6.0440 × (1.31 × ) |
10 | 19 | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) | 1.3479 × (1.20 × ) + | 2.0015 × (2.42 × ) | |
WFG4 | 5 | 14 | 7.8988 × (3.82 × ) + | 7.6398 × (5.03 × ) | 3.2773 × (6.20 × ) + | 3.7270 × (8.00 × ) |
10 | 19 | 9.4417 × (8.64 × ) − | 9.5702 × (2.44 × ) | 1.0054 × (3.41 × ) − | 9.7903 × (1.57 × ) | |
WFG5 | 5 | 14 | 7.5198 × (1.61 × ) + | 7.2390 × (4.27 × ) | 3.7129 × (3.55 × ) + | 4.4547 × (6.82 × ) |
10 | 19 | 8.9827 × (1.38 × ) + | 8.8579 × (2.02 × ) | 1.0346 × (1.46 × ) + | 1.2222 × (4.16 × ) | |
WFG6 | 5 | 14 | 7.2172 × (1.60 × ) + | 7.0659 × (1.33 × ) | 4.1960 × (2.33 × ) + | 4.9629 × (2.58 × ) |
10 | 19 | 8.5851 × (1.47 × ) − | 8.8029 × (1.79 × ) | 1.1139 × (2.98 × ) + | 1.1484 × (5.35 × ) | |
WFG7 | 5 | 14 | 7.9764 × (3.30 × ) + | 7.8435 × (3.56 × ) | 3.1749 × (5.84 × ) + | 3.4372 × (6.61 × ) |
10 | 19 | 9.5475 × (5.47 × ) − | 9.6340 × (2.77 × ) | 9.8868 × (2.40 × ) − | 9.6213 × (1.46 × ) | |
WFG8 | 5 | 14 | 6.8800 × (2.04 × ) + | 6.3234 × (6.33 × ) | 5.9836 × (3.20 × ) + | 7.0094 × (1.09 × ) |
10 | 19 | 8.7396 × (1.40 × ) + | 7.3630 × (7.71 × ) | 1.6441 × (2.66 × ) + | 2.2224 × (4.60 × ) | |
WFG9 | 5 | 14 | 7.5271 × (5.71 × ) + | 7.3180 × (6.41 × ) | 3.7297 × (8.77 × ) + | 4.2105 × (1.12 × ) |
10 | 19 | 9.0123 × (4.14 × ) + | 8.9091 × (3.76 × ) | 1.1322 × (8.26 × ) + | 1.2111 × (4.62 × ) | |
+/−/≈ | 23/14/15 | 28/10/14 |
Problem | M | D | HV | IGD+ | ||
---|---|---|---|---|---|---|
MultiGPO_ARV | MultiGPO_SRV | MultiGPO_ARV | MultiGPO_SRV | |||
DTLZ1 | 5 | 9 | 9.7983 × (5.83 × ) + | 9.7957 × (4.26 × ) | 3.7288 × (3.53 × ) + | 3.7875 × (7.35 × ) |
10 | 14 | 9.9973 × (4.84 × ) + | 9.9968 × (5.99 × ) | 7.8383 × (1.87 × ) + | 8.2646 × (9.27 × ) | |
DTLZ2 | 5 | 14 | 8.1113 × (5.40 × ) − | 8.1147 × (4.91 × ) | 6.4962 × (3.76 × ) − | 6.4032 × (1.56 × ) |
10 | 19 | 9.7172 × (1.84 × ) + | 9.7023 × (2.36 × ) | 1.7059 × (4.57 × ) + | 1.7666 × (3.08 × ) | |
DTLZ3 | 5 | 14 | 8.0451 × (4.55 × ) + | 7.9170 × (9.61 × ) | 7.0722 × (3.81 × ) + | 7.9411 × (7.69 × ) |
10 | 19 | 9.6892 × (1.46 × ) + | 9.6339 × (6.88 × ) | 1.7589 × (3.25 × ) + | 1.8541 × (7.87 × ) | |
DTLZ4 | 5 | 14 | 8.1079 × (6.75 × ) − | 8.1151 × (2.92 × ) | 6.5065 × (3.51 × ) − | 6.3928 × (1.53 × ) |
10 | 19 | 9.7192 × (2.17 × ) + | 9.7021 × (2.63 × ) | 1.7000 × (4.38 × ) + | 1.7579 × (4.26 × ) | |
DTLZ5 | 5 | 14 | 1.0491 × (4.70 × ) ≈ | 1.0449 × (4.85 × ) | 4.2347 × (8.12 × ) ≈ | 4.3883 × (7.30 × ) |
10 | 19 | 8.9374 × (8.76 × ) + | 8.7696 × (2.12 × ) | 8.1812 × (1.90 × ) ≈ | 8.6392 × (1.95 × ) | |
DTLZ6 | 5 | 14 | 1.0093 × (6.61 × ) ≈ | 1.0290 × (5.19 × ) | 5.0886 × (1.35 × ) ≈ | 4.9008 × (1.04 × ) |
10 | 19 | 9.0887 × (1.94 × ) ≈ | 9.0892 × (2.61 × ) | 8.0732 × (1.36 × ) + | 1.0316 × (2.83 × ) | |
DTLZ7 | 5 | 24 | 2.6175 × (2.61 × ) + | 2.5228 × (6.37 × ) | 1.2910 × (3.47 × ) + | 2.0991 × (1.41 × ) |
10 | 29 | 1.3533 × (1.22 × ) ≈ | 1.2967 × (1.59 × ) | 6.7953 × (8.44 × ) ≈ | 6.7916 × (8.51 × ) | |
MaF1 | 5 | 14 | 1.1310 × (2.42 × ) − | 1.1724 × (2.69 × ) | 8.3015 × (1.78 × ) − | 8.0030 × (1.75 × ) |
10 | 19 | 5.3666 × (8.60 × ) ≈ | 2.4953 × (4.43 × ) | 1.6473 × (9.92 × ) + | 1.6657 × (8.11 × ) | |
MaF2 | 5 | 14 | 1.9223 × (2.51 × ) ≈ | 1.9181 × (1.81 × ) | 5.1897 × (5.97 × ) ≈ | 5.2287 × (1.12 × ) |
10 | 19 | 2.2006 × (3.13 × ) ≈ | 2.2185 × (2.93 × ) | 1.1473 × (5.72 × ) ≈ | 1.1269 × (4.54 × ) | |
MaF3 | 5 | 14 | 9.9758 × (7.20 × ) + | 9.9617 × (2.20 × ) | 2.5824 × (1.93 × ) ≈ | 3.2517 × (1.82 × ) |
10 | 19 | 9.9962 × (1.43 × ) + | 9.9910 × (7.12 × ) | 2.2447 × (3.56 × ) ≈ | 2.1471 × (2.12 × ) | |
MaF4 | 5 | 14 | 1.1694 × (2.68 × ) + | 1.1050 × (5.30 × ) | 5.9851 × (3.03 × ) + | 6.5158 × (4.85 × ) |
10 | 19 | 5.4507 × (3.97 × ) − | 7.1109 × (2.01 × ) | 9.4958 × (1.82 × 5) − | 9.2043 × (8.02 × ) | |
MaF5 | 5 | 14 | 7.6540 × (1.19 × ) ≈ | 7.6460 × (2.49 × ) | 4.5367 × (3.03 × ) ≈ | 4.5095 × (5.02 × ) |
10 | 19 | 8.3647 × (3.10 × ) + | 8.3359 × (3.66 × ) | 1.2149 × (2.28 × ) + | 1.2346 × (1.26 × ) | |
MaF6 | 5 | 14 | 1.2973 × (4.61 × ) ≈ | 1.2950 × (4.39 × ) | 1.1069 × (5.97 × ) + | 1.1968 × (6.96 × ) |
10 | 19 | 4.5524 × (2.62 × ) − | 7.2304 × (3.72 × ) | 1.3317 × (3.24 × ) − | 7.7691 × (1.02 × ) | |
MaF7 | 5 | 24 | 2.6077 × (2.75 × ) + | 2.5643 × (2.73 × ) | 1.3091 × (3.40 × ) + | 1.5877 × (3.95 × ) |
10 | 29 | 1.5393 × (3.05 × ) + | 1.3458 × (1.66 × ) | 6.7698 × (2.28 × ) ≈ | 6.7943 × (5.75 × ) | |
MaF8 | 5 | 2 | 1.2592 × (4.35 × ) ≈ | 1.2478 × (4.67 × ) | 4.6730 × (6.46 × ) + | 5.3530 × (2.84 × ) |
10 | 2 | 1.1005 × (1.15 × ) ≈ | 1.0978 × (9.92 × ) | 6.2620 × (0.00 × ) ≈ | 6.3002 × (7.59 × ) | |
MaF9 | 5 | 2 | 3.2427 × (1.01 × ) ≈ | 3.2424 × (2.67 × ) | 5.2483 × (6.17 × ) ≈ | 5.3077 × (4.51 × ) |
10 | 2 | 1.8572 × (1.21 × ) ≈ | 1.8569 × (1.48 × ) | 7.2283 × (4.99 × ) ≈ | 7.2281 × (3.44 × ) | |
MaF10 | 5 | 14 | 9.9591 × (5.39 × ) + | 5.9066 × (7.86 × ) | 1.0616 × (1.75 × ) + | 9.8594 × (2.10 × ) |
10 | 19 | 9.9818 × (8.12 × ) + | 7.2468 × (7.59 × ) | 1.7741 × (7.35 × ) + | 8.5126 × (1.97 × ) | |
WFG1 | 5 | 14 | 9.9624 × (4.40 × ) + | 9.7518 × (3.08 × ) | 1.0612 × (1.51 × ) + | 1.4498 × (4.70 × ) |
10 | 19 | 9.9805 × (7.91 × ) + | 9.9740 × (6.59 × ) | 1.8100 × (5.32 × ) + | 1.8820 × (1.36 × ) | |
WFG2 | 5 | 14 | 9.8743 × (1.98 × ) + | 9.8416 × (2.26 × ) | 1.0821 × (3.25 × ) ≈ | 1.0870 × (3.80 × ) |
10 | 19 | 9.9216 × (1.81 × ) + | 9.8845 × (2.30 × ) | 1.8291 × (1.39 × ) − | 1.7426 × (1.03 × ) | |
WFG3 | 5 | 14 | 1.3093 × (1.75 × ) ≈ | 1.3404 × (1.65 × ) | 4.6603 × (5.86 × ) − | 3.7931 × (4.14 × ) |
10 | 19 | 0.0000 × (0.00 × ) ≈ | 0.0000 × (0.00 × ) | 1.3803 × (1.44 × ) ≈ | 1.3479 × (1.20 × ) | |
WFG4 | 5 | 14 | 7.9304 × (3.16 × ) + | 7.8988 × (3.82 × ) | 3.2184 × (6.14 × ) + | 3.2773 × (6.20 × ) |
10 | 19 | 9.5320 × (5.39 × ) + | 9.4417 × (8.64 × ) | 9.6320 × (2.24 × ) + | 1.0054 × (3.41 × ) | |
WFG5 | 5 | 14 | 7.5300 × (2.97 × ) + | 7.5198 × (1.61 × ) | 3.6670 × (5.91 × ) + | 3.7129 × (3.55 × ) |
10 | 19 | 9.0141 × (1.28 × ) + | 8.9827 × (1.38 × ) | 1.0257 × (1.58 × ) ≈ | 1.0346 × (1.46 × ) | |
WFG6 | 5 | 14 | 7.3125 × (1.50 × ) + | 7.2172 × (1.60 × ) | 4.0251 × (2.25 × ) + | 4.1960 × (2.33 × ) |
10 | 19 | 8.6612 × (1.85 × ) ≈ | 8.5851 × (1.47 × ) | 1.0760 × (3.40 × ) + | 1.1139 × (2.98 × ) | |
WFG7 | 5 | 14 | 7.9760 × (3.31 × ) ≈ | 7.9764 × (3.30 × ) | 3.1604 × (5.65 × ) ≈ | 3.1749 × (5.84 × ) |
10 | 19 | 9.5956 × (3.66 × ) + | 9.5475 × (5.47 × ) | 9.6175 × (1.99 × ) + | 9.8868 × (2.40 × ) | |
WFG8 | 5 | 14 | 6.8976 × (2.81 × ) ≈ | 6.8800 × (2.04 × ) | 6.0005 × (3.45 × ) ≈ | 5.9836 × (3.20 × ) |
10 | 19 | 8.9386 × (1.23 × ) + | 8.7396 × (1.40 × ) | 1.4763 × (2.26 × ) + | 1.6441 × (2.66 × ) | |
WFG9 | 5 | 14 | 7.5112 × (6.66 × ) ≈ | 7.5271 × (5.71 × ) | 3.7320 × (1.04 × ) ≈ | 3.7297 × (8.77 × ) |
10 | 19 | 9.1675 × (8.03 × ) + | 9.0123 × (4.14 × ) | 1.0912 × (4.55 × ) ≈ | 1.1322 × (8.26 × ) | |
+/−/≈ | 28/5/19 | 25/7/20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Zeng, L.; Cui, M. Symmetrical Generalized Pareto Dominance and Adjusted Reference Vector Cooperative Evolutionary Algorithm for Many-Objective Optimization. Symmetry 2024, 16, 1484. https://doi.org/10.3390/sym16111484
Zhu S, Zeng L, Cui M. Symmetrical Generalized Pareto Dominance and Adjusted Reference Vector Cooperative Evolutionary Algorithm for Many-Objective Optimization. Symmetry. 2024; 16(11):1484. https://doi.org/10.3390/sym16111484
Chicago/Turabian StyleZhu, Shuwei, Liusheng Zeng, and Meiji Cui. 2024. "Symmetrical Generalized Pareto Dominance and Adjusted Reference Vector Cooperative Evolutionary Algorithm for Many-Objective Optimization" Symmetry 16, no. 11: 1484. https://doi.org/10.3390/sym16111484
APA StyleZhu, S., Zeng, L., & Cui, M. (2024). Symmetrical Generalized Pareto Dominance and Adjusted Reference Vector Cooperative Evolutionary Algorithm for Many-Objective Optimization. Symmetry, 16(11), 1484. https://doi.org/10.3390/sym16111484