Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions
Abstract
:1. Introduction
2. Preliminary Results
- i
- ii
- iii
3. Main Results
- i.
- ii.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rainville, E. Special Functions; The Macmillan Co., Ltd.: New York, NY, USA, 1960; pp. 123–128. [Google Scholar]
- Raghavendar, K.; Swaminathan, A. Integral transforms of functions to be in certain class defined by the combination of starlike and convex functions. Comput. Math. Appl. 2012, 63, 1296–1304. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Inclusion properties of hypergeometric type functions and related integral transforms. Stud. Univ. Babes-Bolyai Math. 2020, 65, 211–227. [Google Scholar] [CrossRef]
- Giri, M.K.; Raghavendar, K. Inclusion results on hypergeometric functions in a class of analytic functions associated with linear operators. Contemp. Math. 2024, 5, 1738–1757. [Google Scholar] [CrossRef]
- Ali, R.M.; Mondal, S.R.; Ravichandran, V. On the Janowski convexity and starlikeness of the confluent hypergeometric function. Bull. Belg. Math. Soc. Simon Stevin 2015, 22, 227–250. [Google Scholar] [CrossRef]
- Bohra, N.; Ravichandran, V. On confluent hypergeometric functions and generalized Bessel functions. Anal. Math. 2017, 43, 533–545. [Google Scholar] [CrossRef]
- Miller, S.S.; Mocanu, P.T. Univalence of Gaussian and confluent hypergeometric functions. Proc. Am. Math. Soc. 1990, 110, 333–342. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Vuorinen, M. Univalence and convexity properties for confluent hypergeometric functions. Complex Var. Theory Appl. 1998, 36, 73–97. [Google Scholar] [CrossRef]
- Baricz, Á. Geometric Properties of Generalized Bessel Functions. In Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics Vol. 1994; Springer: Berlin/Heidelberg, Germany, 2010; pp. 23–69. [Google Scholar] [CrossRef]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transform. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Kanas, S.; Mondal, S.R.; Mohammed, A.D. Relations between the generalized Bessel functions and the Janowski class. Math. Inequal. Appl. 2018, 21, 165–178. [Google Scholar] [CrossRef]
- Prajapat, J.K. Certain geometric properties of normalized Bessel functions. Appl. Math. Lett. 2011, 24, 2133–2139. [Google Scholar] [CrossRef]
- Baricz, A.; Yağmur, N. Geometric properties of some Lommel and Struve functions. Ramanujan J. 2017, 42, 325–346. [Google Scholar] [CrossRef]
- Farzana, H.A.; Bhaskaran, A.S.; Muthusamy, P.J. Univalent and starlike properties for generalized Struve function. Int. J. Math. Math. Sci. 2016, 20, 3987231. [Google Scholar] [CrossRef]
- Noreen, S.; Raza, M.; Deniz, E.; Kazımoğlu, S. On the Janowski class of generalized Struve functions. Afr. Mat. 2019, 30, 23–35. [Google Scholar] [CrossRef]
- Sim, Y.; Kwon, O.; Cho, N.E. Geometric properties of Lommel functions of the first kind. Symmetry 2018, 10, 455. [Google Scholar] [CrossRef]
- Yagmur, N. Hardy space of Lommel functions. Bull. Korean Math. Soc. 2015, 52, 1035–1046. [Google Scholar] [CrossRef]
- Din, M.U.; Raza, M.; Xin, Q.; Yalçin, S.; Malik, S.N. Close-to-Convexity of q-Bessel–Wright Functions. Mathematics 2022, 10, 3322. [Google Scholar] [CrossRef]
- Owa, S.; Srivastava, H.M. Univalent and starlike generalized hypergeometric functions. Can. J. Math. 1987, 39, 1057–1077. [Google Scholar] [CrossRef]
- Ruscheweyh, S.; Singh, V. On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 1986, 113, 1–11. [Google Scholar] [CrossRef]
- Duren, P.L. Elementary theory of univalent functions. In Univalent Functions; Springer: New York, NY, USA, 1983; pp. 32–75. [Google Scholar]
- Goodman, A.W. Univalent functions and nonanalytic curves. Proc. Amer. Math. Soc. 1957, 8, 598–601. [Google Scholar] [CrossRef]
- Ponnusamy, S.; Rønning, F. Starlike properties for convolutions involving hypergeometric series. Ann. Univ. Mariae Curie-Sklodowska Sect. A 1998, 52, 141–155. [Google Scholar]
- Gangadharan, A.; Shanmugam, T.N.; Srivastava, H.M. Generalized hypergeometric functions associated with K-uniformly convex functions. Comput. Math. Appl. 2002, 44, 1515–1526. [Google Scholar] [CrossRef]
- Bharati, R.; Parvatham, R.; Swaminathan, A. On subclasses of uniformly convex functions and corresponding class of starlike functions. Tamkang J. Math. 1997, 28, 17–32. [Google Scholar] [CrossRef]
- Rønning, F. On starlike functions associated with parabolic regions. Ann. Univ. Mariae Curie-Skłodowska Sect. Math. 1991, 45, 117–122. [Google Scholar]
- Kanas, S.; Wisinowaska, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.; Wisinowaska, A. Conic regions and k-starlike functions. Rev. Roum. Math. Pure Appl. 2000, 45, 647–657. [Google Scholar]
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Goodman, A.W. On uniformly starlike functions. J. Math. Anal. Appl. 1991, 155, 364–370. [Google Scholar] [CrossRef]
- Baricz, A. Geometric properties of generalized Bessel functions of complex order. Mathematica 2006, 48, 13–18. [Google Scholar]
- Porwal, S.; Ahmad, M. Some Sufficient Conditions for Generalized Bessel Functions Associated with Conic Regions. Vietnam. J. Math. 2015, 43, 163–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, S.R.; Giri, M.K.; Kondooru, R. Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions. Symmetry 2024, 16, 662. https://doi.org/10.3390/sym16060662
Mondal SR, Giri MK, Kondooru R. Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions. Symmetry. 2024; 16(6):662. https://doi.org/10.3390/sym16060662
Chicago/Turabian StyleMondal, Saiful R., Manas Kumar Giri, and Raghavendar Kondooru. 2024. "Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions" Symmetry 16, no. 6: 662. https://doi.org/10.3390/sym16060662
APA StyleMondal, S. R., Giri, M. K., & Kondooru, R. (2024). Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions. Symmetry, 16(6), 662. https://doi.org/10.3390/sym16060662