Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case
Abstract
:1. Introduction
2. Preliminaries
3. The Main Results
4. Examples and Discussion
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hale, J.K. Functional differential equations. In Oxford Applied Mathematical Sciences; Springer: New York, NY, USA, 1971. [Google Scholar]
- Rihan, F.A. Delay Differential Equations and Applications to Biology; Springer Nature Singapore Pte Ltd.: Singapore, 2021. [Google Scholar]
- Li, T.; Rogovchenko, Y.V. Oscillation of second-order neutral differential equations. Math. Nachr. 2015, 288, 1150–1162. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations. Monatsh. Math. 2017, 184, 489–500. [Google Scholar] [CrossRef]
- Trench, W.F. Canonical forms and principal systems for general disconjugate equations. Trans. Amer. Math. Soc. 1973, 189, 319–327. [Google Scholar] [CrossRef]
- Philos, C.G. On the existence of nonoscillatory solutions tending to zero at ∞ for differential equations with positive delays. Arch. Math. 1981, 36, 168–178. [Google Scholar] [CrossRef]
- Erbe, L.; Kong, Q.; Zhang, B. Oscillation Theory for Functional Differential Equations; Marcel Dekker: New York, NY, USA, 1995. [Google Scholar]
- Tang, X. Oscillation for first order superlinear delay differential equations. J. London Math. Soc. 2002, 65, 115–122. [Google Scholar] [CrossRef]
- Baculíková, B. Properties of third order nonlinear functional differential equations with mixed arguments. Abstr. Appl. Anal. 2011, 2011, 1–15. [Google Scholar] [CrossRef]
- Salim, A.; Mesri, F.; Benchohra, M.; Tunç, C. Controllability of Second Order Semilinear Random Differential Equations in Fréchet Spaces. Mediterr. J. Math. 2023, 20, 84. [Google Scholar] [CrossRef]
- Tunç, C. Stability to vector Liénard equation with constant deviating argument. Nonlinear Dyn. 2013, 73, 1245–1251. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V.; Zhang, C. Oscillation results for second-order nonlinear neutral differential equations. Adv. Differ. Equ. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Li, T.; Thandapani, E.; Graef, J.R.; Tunc, E. Oscillation of second-order Emden–Fowler neutral differential equations. Nonlinear Stud. 2013, 20, 1–8. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Even-order half-linear advanced differential equations: Improved criteria in oscillatory and asymptotic prop- erties. Appl. Math. Comput. 2015, 266, 481–490. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation of second order differential equations with advanced argument. Math. Slovaca 1995, 45, 263–268. [Google Scholar]
- Koplatadze, R.; Kvinikadze, G.; Stavroulakis, I.P. Properties A and B of n th order linear differential equations with deviating argument. Georgian Math. J. 1999, 6, 553–566. [Google Scholar]
- Kusano, T.; Naito, M. Comparison theorems for functional differential equations with deviating arguments. J. Math. Soc. Jpn. 1981, 33, 509–532. [Google Scholar] [CrossRef]
- Jadlovská, I. Iterative oscillation results for second-order differential equations with advanced argument. Electron. J. Diff. Equ. 2017, 2017, 1–11. [Google Scholar]
- Baculíková, B. Oscillatory behavior of the second order functional differential equations. Appl. Math. Lett. 2017, 72, 35–41. [Google Scholar] [CrossRef]
- Džurina, J. A comparison theorem for linear delay differential equations. Arch. Math. Brno 1995, 31, 113–120. [Google Scholar]
- Chatzarakis, G.E.; Grace, S.R.; Jadlovská, I.R.E.N.A. A sharp oscillation criterion for second-order half-linear advanced differential equations. Acta Math. Hung. 2021, 163, 2. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Saker, S.H. Oscillation of second order delay dynamic equation. Canadian Appl. Math. Quart. 2005, 13, 1–18. [Google Scholar]
- Zhang, B.G.; Shanliang, Z. Oscillation of second-order nonlinear delay dynamic equations on time scales. Comput. Math. Appl. 2005, 49, 599–609. [Google Scholar] [CrossRef]
- Şahı, Y. Oscillation of second-order delay dynamic equations on time scales. Nonlinear Anal. Theor. Meth. Appl. 2005, 63, e1073–e1080. [Google Scholar] [CrossRef]
- Hassan, T.S. Kamenev-type oscillation criteria for second order nonlinear dynamic equations on time scales. Appl. Math. Comput. 2011, 217, 5285–5297. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R.; O’Regan, D. Oscillation Theory for Second Order Dynamic Equations; CRC Press: London, UK, 2003; Volume 416. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Zhang, C.; Li, T. New Kamenev-type oscillation criteria for second-order nonlinear advanced dynamic equations. Appl. Math. Comput. 2013, 225, 822–828. [Google Scholar] [CrossRef]
- Wu, H.; Erbe, L.; Peterson, A. Oscillation of solution to second-order half-linear delay dynamic equations on time scales. Electron. J. Diff. Equ. 2016, 2016, 1–15. [Google Scholar]
- Ladde, G.S.; Lakshmikantham, V.; Zhang, B.G. Oscillation Theory of Differential Equations with Deviating Arguments; Marcel Dekker: New York, NY, USA, 1987; Volume 110. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqahtani, Z.; Qaraad, B.; Almuneef, A.; Alharbi, F. Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case. Symmetry 2024, 16, 1018. https://doi.org/10.3390/sym16081018
Alqahtani Z, Qaraad B, Almuneef A, Alharbi F. Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case. Symmetry. 2024; 16(8):1018. https://doi.org/10.3390/sym16081018
Chicago/Turabian StyleAlqahtani, Zuhur, Belgees Qaraad, Areej Almuneef, and Faizah Alharbi. 2024. "Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case" Symmetry 16, no. 8: 1018. https://doi.org/10.3390/sym16081018
APA StyleAlqahtani, Z., Qaraad, B., Almuneef, A., & Alharbi, F. (2024). Oscillatory Properties of Second-Order Differential Equations with Advanced Arguments in the Noncanonical Case. Symmetry, 16(8), 1018. https://doi.org/10.3390/sym16081018