Conformable Double Laplace Transform Method (CDLTM) and Homotopy Perturbation Method (HPM) for Solving Conformable Fractional Partial Differential Equations
Abstract
:1. Introduction
2. Conformable Double Laplace Transform Method (CDLTM) and Properties of Conformable Derivatives (CDs)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- .
Conformable Double Laplace Transform Method (CDLTM)
- 1.
- 2.
- 3.
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- where
- 7.
- .
3. Analysis of the Method (CDLTM)
4. Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chakraverty, S.; Mahato, N.; Karunakar, P.; Rao, T.D. Advanced Numerical and Semi-Analytical Methods for Differential Equations, 1st ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 131–139. [Google Scholar]
- Debtnath, L. Nonlinear Partial Dierential Equations for Scientist and Engineers; Birkhauser: Boston, MA, USA, 1997. [Google Scholar]
- Podlubny, I. Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Math. Sci. Eng. 1999, 198, 41–119. [Google Scholar]
- Aslan, E.C.; Mustafa Inc.; Al Qurashi, M.M.; Baleanu, D. On numerical solutions of time-fraction generalized Hirota Satsuma coupled KdV equation. J. Nonlinear Sci. Appl. 2017, 2, 724–733. [Google Scholar] [CrossRef]
- Ozkan, O.; Kurt, A. Conformable Fractional Double Laplace Transform and its Applications to Fractional Partial Integro-Differential Equations. J. Fract. Calc. Appl. 2020, 11, 70–81. [Google Scholar]
- Eltayeb, H.; Mesloub, S.; Abdalla, Y.T.; Kılıçman, A. A Note on Double Conformable Laplace Transform Method and Singular One Dimensional Conformable Pseudohyperbolic Equations. Mathematics 2019, 7, 949. [Google Scholar] [CrossRef]
- Caputo, M. Linear Models of Dissipation Whose Q Is almost Frequency Independent. Ann. Geophys. 1966, 19, 383–393. [Google Scholar] [CrossRef]
- Liouville, J. Memory on a few questions of geometry and mechanics, and on a new kind of calculation to solve these questions. J. l’École Polytech. 1832, 13, 131–169. (In French) [Google Scholar]
- Ross, B. The development of fractional calculus 1695–1900. Hist. Math. 1974, 4, 75–89. [Google Scholar] [CrossRef]
- He, J.H. Application of homotopy perturbation method to nonlinear wave equations. Chaos Solitons Fractals 2005, 26, 695–700. [Google Scholar] [CrossRef]
- Momani, S.; Odibat, Z. Homotopy perturbation method for nonlinear partial differential equation of fractional order. Phys. Lett. A 2007, 365, 345–350. [Google Scholar] [CrossRef]
- Wang, Q. Homotopy perturbation method for fractional Kdv-Burgers Equation. Chaos Solitons Fractals 2008, 35, 843–850. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Thabet, H.; Kendre, S. Analytical solutions for conformable space time fractional partial diferential equations via fractional di erential transform. Chaos Solitons Fractals 2018, 109, 238–245. [Google Scholar] [CrossRef]
- Yaslan, H.C. New analytic solutions of the conformable spacetime fractional Kawahara equation. Opt. Int. J. Light Electron Opt. 2017, 140, 123–126. [Google Scholar] [CrossRef]
- Alfaqeih, S.; Kayijuka, I. Solving System of Conformable Fractional Differential Equations by Conformable Double Laplace Decomposition Method. J. Partial. Differ. Equ. 2020, 33, 275–290. [Google Scholar]
- Kilicman, A.; Gadain, H.E. An application of double Laplace transform and Sumudu transform. Lobachevskii J. Math. 2009, 30, 214–223. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Qing, L.; Li, X. Meshless analysis of fractional diffusion-wave equations by generalized finite difference method. Appl. Math. Lett. 2024, 157, 109204. [Google Scholar] [CrossRef]
- Qing, L.; Li, X. Analysis of a meshless generalized finite difference method for the time-fractional diffusion-wave equation. Comput. Math. Appl. 2024, 172, 134–151. [Google Scholar] [CrossRef]
- Difonzo, F.V.; Garrappa, R. A Numerical Procedure for Fractional-Time-Space Differential Equations with the Spectral Fractional Laplacian. In Fractional Differential Equations. INDAM 2021; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Özkan, O.; Kurt, A. On conformable double Laplace transform. Opt. Quantum Electron. 2018, 50, 103. [Google Scholar] [CrossRef]
- Hashemi, M.S. Invariant subspaces admitted by fractional differential equations with conformable derivatives. Chaos Solitons Fractals 2018, 107, 161–169. [Google Scholar] [CrossRef]
- Jarad, F.; Abdeljawad, T. A modified Laplace transform for certain generalized fractional operators. Results Nonlinear Anal. 2018, 1, 88–98. [Google Scholar]
- Kiliciman, A.; Omran, M. On fractional double Laplace transform and its applications. J. Nonlinear Sci. Appl. 2017, 10, 1744–1754. [Google Scholar] [CrossRef]
- Eltayeb, H.; Bachar, I.; Gad-Allah, M. Solution of singular one-dimensional Boussinesq equation by using double conformable Laplace decomposition method. Adv. Differ. Equ. 2019, 2019, 293. [Google Scholar] [CrossRef]
- Gadain, H.E. Application of double natural decomposition method for solving singular one dimensional boussinesq equation. Filomat 2018, 32, 4389–4401. [Google Scholar] [CrossRef]
- Javeed, S.; Baleanu, D.; Waheed, A.; Shaukat Khan, M.; Affan, H. Analysis of homotopy perturbation method for solving fractional order differential equations. Mathematics 2019, 7, 40. [Google Scholar] [CrossRef]
Exact S. | Abs. Error | |||||
---|---|---|---|---|---|---|
0.25 | 0.2 | 0.015115 | 0.013713 | 0.012668 | 0.012417 | |
0.4 | 0.027551 | 0.025904 | 0.024679 | 0.024339 | ||
0.6 | 0.038149 | 0.036729 | 0.035579 | 0.035290 | ||
0.8 | 0.046979 | 0.045934 | 0.045059 | 0.044835 | ||
0.75 | 0.2 | 0.136036 | 0.123418 | 0.114011 | 0.111752 | |
0.4 | 0.247607 | 0.233141 | 0.221832 | 0.219048 | ||
0.6 | 0.343342 | 0.330557 | 0.320210 | 0.317611 | ||
0.8 | 0.422808 | 0.413407 | 0.405529 | 0.403551 |
Exact S. | Abs. Error | |||||
---|---|---|---|---|---|---|
0.25 | 0.2 | 0.015115 | 0.013713 | 0.012668 | 0.012417 | |
0.4 | 0.027551 | 0.025904 | 0.024679 | 0.024339 | ||
0.6 | 0.038149 | 0.036729 | 0.035579 | 0.035290 | ||
0.8 | 0.046979 | 0.045934 | 0.045059 | 0.044835 | ||
0.75 | 0.2 | 0.136036 | 0.123418 | 0.114011 | 0.111752 | |
0.4 | 0.247607 | 0.233141 | 0.221832 | 0.219048 | ||
0.6 | 0.343342 | 0.330557 | 0.320210 | 0.317611 | ||
0.8 | 0.422808 | 0.413407 | 0.405529 | 0.403551 |
Exact S. | Abs. Error | |||||
---|---|---|---|---|---|---|
0.25 | 0.2 | 0.015266 | 0.013826 | 0.0127562 | 0.01250 | |
0.4 | 0.028418 | 0.026709 | 0.0253362 | 0.02500 | ||
0.6 | 0.041034 | 0.039260 | 0.0378505 | 0.03750 | ||
0.8 | 0.035161 | 0.051599 | 0.0503224 | 0.05000 | ||
0.75 | 0.2 | 0.137398 | 0.124431 | 0.1148060 | 0.11250 | |
0.4 | 0.256393 | 0.240384 | 0.2280258 | 0.22500 | ||
0.6 | 0.369309 | 0.253340 | 0.3406547 | 0.33750 | ||
0.8 | 0.478447 | 0.464392 | 0.4529014 | 0.45000 |
Exact S. | Abs. Error | |||||
---|---|---|---|---|---|---|
0.25 | 0.2 | −0.007591 | −0.036973 | −0.057671 | −0.06250 | |
0.4 | 0.3781972 | 0.3097008 | 0.2613081 | 0.25000 | ||
0.6 | 1.1837141 | 1.0169983 | 0.9016628 | 0.87500 | ||
0.8 | 4.0191766 | 3.3001129 | 2.8492753 | 2.75000 | ||
0.75 | 0.2 | −0.669197 | −0.678989 | −0.685890 | −0.6857 | |
0.4 | −0.450600 | −0.563433 | −0.579564 | −0.5833 | ||
0.6 | −0.272096 | −0.327667 | −0.366112 | −0.3750 | ||
0.8 | 0.6730589 | 0.4333709 | 0.2830918 | 0.2500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
GadAllah, M.R.; Gadain, H.E. Conformable Double Laplace Transform Method (CDLTM) and Homotopy Perturbation Method (HPM) for Solving Conformable Fractional Partial Differential Equations. Symmetry 2024, 16, 1232. https://doi.org/10.3390/sym16091232
GadAllah MR, Gadain HE. Conformable Double Laplace Transform Method (CDLTM) and Homotopy Perturbation Method (HPM) for Solving Conformable Fractional Partial Differential Equations. Symmetry. 2024; 16(9):1232. https://doi.org/10.3390/sym16091232
Chicago/Turabian StyleGadAllah, Musa Rahamh, and Hassan Eltayeb Gadain. 2024. "Conformable Double Laplace Transform Method (CDLTM) and Homotopy Perturbation Method (HPM) for Solving Conformable Fractional Partial Differential Equations" Symmetry 16, no. 9: 1232. https://doi.org/10.3390/sym16091232
APA StyleGadAllah, M. R., & Gadain, H. E. (2024). Conformable Double Laplace Transform Method (CDLTM) and Homotopy Perturbation Method (HPM) for Solving Conformable Fractional Partial Differential Equations. Symmetry, 16(9), 1232. https://doi.org/10.3390/sym16091232