Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits
Abstract
:1. Introduction
2. Geological Setting
3. Analytical Methods
3.1. U-Pb Zircon Dating
3.2. Major and Trace Element Determinations
3.3. Whole-Rock Sr–Nd–Pb Isotope Analysis
3.4. Olivine Composition Analyses
4. Results
4.1. U-Pb Zircon Geochronology
4.2. Major and Trace Elements
4.3. Sr–Nd–Pb Isotopes
4.4. Mineral Compositions
4.5. Characteristics of the Host Sandstones and Secondary Alteration Related to Mafic Intrusions
5. Discussion
5.1. Crystal Fractionation and Crustal Contamination
5.2. Mantle Source of the Qianjiadian Mafic Rocks
5.3. Tectono-Magmatic Significance
5.4. Constraints on U Mineralization
5.5. Comparison with the Ordos Basin
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Huston, D.L.; Mernagh, T.P.; Hagemann, S.G.; Doublier, M.P.; Fiorentini, M.; Champion, D.C.; Jaques, A.L.; Czarnota, K.; Cayley, R.; Skirrow, R.; et al. Tectono-metallogenic systems–The place of mineral systems within tectonic evolution, with an emphasis on Australian examples. Ore Geol. Rev. 2016, 76, 168–210. [Google Scholar] [CrossRef]
- Jin, R.S.; Miao, P.S.; SiMa, X.Z.; Li, J.G.; Zhao, H.L.; Zhao, F.Q.; Feng, X.X.; Chen, Y.; Chen, L.L.; Zhao, L.J.; et al. Structure styles of Mesozoic-Cenozoic U-bearing rock series in Northern China. Acta Geol. Sin. 2016, 90, 2104–2116. [Google Scholar] [CrossRef]
- Wang, F.F.; Liu, C.Y.; Qiu, X.W.; Guo, P.; Zhang, S.H.; Cheng, X.H. Characteristics and distribution of world’s identified sandstone-type uranium resources. Acta Geol. Sin. 2017, 91, 2021–2046, (In Chinese with English Abstract). [Google Scholar]
- Zhao, Z.H.; Bai, J.P.; Lai, T.G. Reversal structure and its relation to metallization of sandstone-type uranium deposit in Northern Songliao Basin. Uranium Geol. 2018, 34, 274–279, (In Chinese with English Abstract). [Google Scholar]
- Cheng, Y.H.; Wang, S.Y.; Jin, R.S.; Li, J.G.; Ao, C.; Teng, X.M. Global Miocene tectonics and regional sandstone-style uranium mineralization. Ore Geol. Rev. 2019, 106, 238–250. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Wang, S.Y.; Zhang, T.F.; Teng, X.M.; Ao, C.; Jin, R.S.; Li, H.L. Regional sandstone-type uranium mineralization rooted in Oligo–Miocene tectonic inversion in the Songliao Basin, NE China. Gondwana Res. 2020, 88, 88–105. [Google Scholar] [CrossRef]
- Jin, R.S.; Teng, X.M.; Li, X.G.; Si, Q.H.; Wang, W. Genesis of sandstone-type uranium deposits along the northern margin of the Ordos Basin, China. Geosci. Front. 2020, 11, 215–227. [Google Scholar] [CrossRef]
- Leroy, J. The Margnac and Fanay uranium deposits of the La Crouzille district (western Massif Central, France): Geologic and fluid inclusion studies. Econ. Geol. 1978, 73, 1611–1634. [Google Scholar] [CrossRef]
- Marignac, C.; Cuney, M. Ore deposits of the French Massif Central, Insight into the metallogenesis of the Variscan belt. Miner. Depos. 1999, 34, 472–504. [Google Scholar] [CrossRef]
- Ling, H.F.; Shen, W.Z.; Deng, P.; Jiang, S.Y.; Ye, H.M.; Pu, W.; Tan, Z.Z. Geochemical characteristics and genesis of Luxi-Xiazhuang diabase dikes in Xiazhuang uranium orefield, northern Guangdong province. Acta Geol. Sin. 2005, 79, 497–506. [Google Scholar]
- Hu, R.Z.; Bi, X.W.; Zhou, M.F.; Peng, J.T.; Su, W.C.; Liu, S.; Qi, H.W. Uranium metallogenesis in South China and its relationship to crustal extension during the Cretaceous to Tertiary. Econ. Geol. 2008, 103, 583–598. [Google Scholar] [CrossRef]
- Wang, L.X.; Ma, C.Q.; Lai, Z.X.; Marks, M.A.W.; Zhang, C.; Zhong, Y.F. Early Jurassic mafic dykes from the Xiazhuang ore district (South China): Implications for tectonic evolution and uranium metallogenesis. Lithos 2015, 239, 71–85. [Google Scholar] [CrossRef]
- Polito, P.A.; Kyser, T.K.; Rheinberger, G.; Southgate, P.N. A paragenetic and isotopic study of the Proterozoic Westmoreland uranium deposits, Southern McArthur Basin, Northern Territory, Australia. Econ. Geol. 2005, 100, 1243–1260. [Google Scholar] [CrossRef]
- Xia, Y.L.; Lin, J.R.; Li, Z.Y.; Li, S.X.; Liu, H.B.; Wang, Z.M.; Fan, G.; Zheng, J.W.; Li, Z.J.; Zhang, M.Y. Perspective and resource evaluation and metallogenic studies on sandstone-type uranium deposit in Qianjiadian depression of Songliao Basin. China Nucl. Sci. Technol. Rep. 2003, 3, 105–117, (In Chinese with English Abstract). [Google Scholar]
- Xia, Y.L.; Zheng, J.W.; Li, Z.Y.; Li, L.Q.; Tian, S.F. Metallogenic characteristics and model of the Qianjiadian uranium deposit in the Songliao basin. Miner. Depos. 2010, 29, 154–155, (In Chinese with English Abstract). [Google Scholar]
- Jiao, Y.Q.; Wu, L.Q.; Peng, Y.B.; Rong, H.; Ji, D.M.; Miao, A.S.; Li, H.L. Sedimentary-tectonic setting of the deposition-type uranium deposits forming in the Paleo-Asian tectonic domain, North China. Earth Sci. Front. 2015, 22, 189–205, (In Chinese with English Abstract). [Google Scholar]
- Rong, H.; Jiao, Y.; Wu, L.; Jia, J.; Cao, M. Effects of basic intrusions on REE mobility of sandstones and their geological significance: A case study from the Qianjiadian sandstone-hosted uranium deposit in the Songliao Basin. Appl. Geochem. 2020, 120, 104665. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, H.F.; Xia, Y.L.; Zhang, Z.G. Geologic characteristics and metallogenic model of Qianjiadian uranium deposit in Songliao Basin. Uranium Geol. 2007, 23, 193–201, (In Chinese with English Abstract). [Google Scholar]
- Rong, H.; Jiao, Y.; Wu, L.; Ji, D.; Li, H.; Zhu, Q.; Cao, M.; Wang, X.; Li, Q.; Xie, H. Epigenetic alteration and its constraints on uranium mineralization from the Qianjiadian uranium deposit, southern Songliao Basin. Earth Sci. 2016, 41, 153–166, (In Chinese with English Abstract). [Google Scholar]
- Rong, H.; Jiao, Y.Q.; Wu, L.Q.; Wan, D.; Cui, Z.J.; Guo, X.J.; Jia, J.M. Origin of the carbonaceous debris and its implication for mineralization within the Qianjiadian uranium deposit, southern Songliao Basin. Ore Geol. Rev. 2019, 107, 336–352. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Wang, S.Y.; Li, Y.; Ao, C.; Li, Y.F.; Li, J.G.; Li, H.L.; Zhang, T.F. Late Cretaceous–Cenozoic thermochronology in the southern Songliao Basin, NE China: New insights from apatite and zircon fission track analysis. J. Asian Earth Sci. 2018, 160, 95–106. [Google Scholar] [CrossRef]
- Min, M.; Xu, H.F.; Chen, J.; Mostafa, F. Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China. Ore Geol. Rev. 2005, 26, 198–206. [Google Scholar] [CrossRef]
- Cai, C.F.; Dong, H.L.; Li, H.T.; Xiao, X.J.; Ou, G.X.; Zhang, C.M. Mineralogical and geochemical evidence for coupled bacterial uranium mineralization and hydrocarbon oxidation in the Shashagetai deposit, NW China. Chem. Geol. 2007, 236, 167–179. [Google Scholar] [CrossRef]
- Grant, B.D.; Charles, R.M.B.; David, J.G. Geology, geochemistry and mineralogy of the lignite-hosted ambassador palaeochannel uranium and multi-element deposit, Gunbarrel Basin, Western Australia. Miner. Depos. 2011, 46, 761–787. [Google Scholar]
- Abzalov, M.Z.; Paulson, O. Sandstone hosted uranium deposits of the great divide basin, Wyoming, USA. Appl. Earth Sci. 2012, 121, 76–83. [Google Scholar] [CrossRef]
- Jiang, L.; Cai, C.F.; Zhang, Y.D.; Mao, S.Y.; Sun, Y.G.; Li, K.K.; Xiang, L.; Zhang, C.M. Lipids of sulfate reducing bacteria and sulfur-oxidizing bacteria found in the Dongsheng uranium deposit. Chin. Sci. Bull. 2012, 57, 1311–1319. [Google Scholar] [CrossRef] [Green Version]
- Bonnetti, C.; Liu, X.; Yan, Z.; Cuney, M.; Michels, R.; Malartre, F.; Mercadier, J.; Cai, J. Coupled uranium mineralisation and bacterial sulphate reduction for the genesis of the Baxingtu sandstone-hosted U deposit, SW Songliao Basin, NE China. Ore Geol. Rev. 2017, 82, 108–129. [Google Scholar] [CrossRef]
- Meunier, J.D.; Trouiller, A.; Brulhet, J.; Pagel, M. Uranium and organic matter in a paleodeltaic environment: The Coutras Deposit (Gironde, France). Econ. Geol. 1989, 84, 1541–1556. [Google Scholar] [CrossRef]
- Cai, C.F.; Zhao, L. Thermochemical sulfate reduction and its effects on petroleum composition and reservoir quality: Advances and problems. Bull. Mineral. Petrol. Geochem. 2016, 35, 851–859, (In Chinese with English Abstract). [Google Scholar]
- Sangély, L.; Chaussidon, M.; Michels, R.; Brouand, M.; Cuney, M.; Huault, V.; Landais, P. Micrometer scale carbon isotopic study of bitumen associated with Athabasca uranium deposits: Constraints on the genetic relationship with petroleum sourcerocks and the abiogenic origin hypothesis. Earth Planet. Sci. Lett. 2007, 258, 378–396. [Google Scholar] [CrossRef]
- Jiao, Y.Q.; Wu, L.Q.; Rong, H.; Peng, Y.B.; Miao, A.S.; Wang, X.M. The relationship between Jurassic coal measures and sandstone-type uranium deposits in the northeastern Ordos Basin, China. Acta Geol. Sin. 2016, 90, 2117–2132. [Google Scholar] [CrossRef]
- Jiao, Y.Q.; Wu, L.Q.; Rong, H. Model of inner and outer reductive media within uranium reservoir sandstone of Sandstone-type Uranium deposits and its ore-controlling mechanism: Case studies in Daying and Qianjiadian uranium deposit. Earth Sci. 2018, 43, 459–474, (In Chinese with English Abstract). [Google Scholar]
- Bonnetti, C.; Zhou, L.; Riegler, T.; Brugger, J.; Fairclough, M. Large S isotope and trace element fractionations in pyrite of uranium roll front systems result from internally-driven biogeochemical cycle. Geochim. Cosmochim. Acta 2020. [Google Scholar] [CrossRef]
- Nie, F.J.; Yan, Z.B.; Xia, F.; Li, M.G.; Feng, Z.B.; Lu, Y.Y.; Cai, J.F. Mineralisation from hot fluid flows in the sandstone-type uranium deposit in the Kailu Basin, Northeast China. Appl. Earth Sci. 2018, 127, 2–14. [Google Scholar] [CrossRef]
- Feng, Z.Q.; Jia, C.Z.; Xie, X.N.; Zhang, S.; Feng, Z.H.; Timothy, A.C. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao basin, northeast China. Basin Res. 2010, 22, 79–95. [Google Scholar]
- Zhao, L.; Cai, C.F.; Jin, R.S.; Li, J.G.; Li, H.L.; Wei, J.L.; Guo, F.; Zhang, B. Mineralogical and geochemical evidence for biogenic and petroleum-related uranium mineralization in the Qianjiadian deposit, NE China. Ore Geol. Rev. 2018, 101, 273–292. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Li, Y.; Wang, S.Y.; Li, Y.F.; Ao, C.; Li, J.G.; Sun, L.X.; Li, H.L.; Zhang, T.F. Late Cretaceous tectono-magmatic event in Songliao Basin, NE China: New insights from mafic dyke geochronology and geochemistry analysis. Geol. J. 2018, 53, 2991–3008. [Google Scholar] [CrossRef]
- Wang, P.J.; Xie, X.A.; Mattern, F.; Ren, Y.G.; Zhu, D.F.; Sun, X.M. The Cretaceous Songliao Basin: Volcanogenic succession, sedimentary sequence and tectonic evolution, NE China. Acta Pet. Sin. 2007, 81, 1002–1011. [Google Scholar]
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.Y.; Sun, D.Y.; Li, H.M.; Wang, X.L. The nature of basement beneath the Songliao Basin in NE China: Geochemical and isotopic constraints. Phys. Chem. Earth Part A 2001, 26, 793–803. [Google Scholar] [CrossRef]
- Wang, P.J.; Mattern, F.; Didenko, A.; Zhu, D.F.; Singer, B.; Sun, X.M. Tectonics and cycle system of the Cretaceous Songliao Basin: An inverted active continental margin basin. Earth Sci. Rev. 2016, 159, 82–102. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.L.; Su, X.B.; Zhang, B. Discussion on mining utilization coefficient for in situ leaching sandstone type uranium resource: A case study of qianjiadian uranium deposit. Uranium Minine Metall. 2017, 36, 19–22, (In Chinese with English Abstract). [Google Scholar]
- Liu, X.M.; Gao, S.; Diwu, C.R.; Yuan, H.L.; Hu, Z.C. Simultaneous in situ determination of U–Pb age and trace elements in zircon by LA–ICP–MS in 20 µm spot size. Chin. Sci. Bull. 2007, 52, 1257–1264. [Google Scholar] [CrossRef]
- Hoskin, W.O.; Schaltegger, U. The composition of zircon and igneous and metamorphic petrogenesis. Rev. Mineral. Geochem. 2003, 53, 27–62. [Google Scholar] [CrossRef]
- Yang, F.P.; Chen, F.J.; Wang, Y.H.; Li, J.K. Apatite fission track analysis in the central depression, Songliao Basin. Pet. Explor. Dev. 1995, 22, 20–25, (In Chinese with English Abstract). [Google Scholar]
- Xu, Y.G.; Zhang, H.H.; Qiu, H.N.; Ge, W.C.; Wu, F.Y. Oceanic crust components in continental basalts from Shuangliao, Northeast China: Derived from the mantle transition zone. Chem. Geol. 2012, 328, 168–184. [Google Scholar] [CrossRef]
- Irvine, T.H.; Baragar, W.R.A. A guide to the chemical classification of the common volcanic rocks. Can. J. Earth Sci. 1971, 8, 523–548. [Google Scholar] [CrossRef]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.Q.; Chen, L.H.; Wang, X.J.; Zhong, Y.; Yu, X.; Zeng, G.; Erdmann, S. The role of melt-rock interaction in the formation of Quaternary high-MgO potassic basalt from the Greater Khingan Range, Northeast China. J. Geophys. Res. Solid Earth. 2017, 122, 262–280. [Google Scholar] [CrossRef]
- Xu, Y.G.; Ma, J.L.; Frey, F.A.; Feigenson, M.D.; Liu, J.F. Role of lithosphere–asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong, western North China Craton. Chem. Geol. 2005, 224, 247–271. [Google Scholar] [CrossRef]
- Wang, X.J.; Chen, L.H.; Hofmann, A.W.; Mao, F.G.; Liu, J.Q.; Zhong, Y.; Xie, L.W.; Yang, Y.H. Mantle transition zone-derived EM1 component beneath NE China: Geochemical evidence from Cenozoic potassic basalts. Earth. Planet. Sci. Lett. 2017, 465, 16–28. [Google Scholar] [CrossRef]
- Zou, H.B.; Zindler, A.; Xu, X.S.; Qi, Q. Major, trace element, and Nd, Sr and Pb isotopic studies of Cenozoic basalts in SE China: Mantle sources, regional variations, and tectonic significance. Chem. Geol. 2000, 17, 33–47. [Google Scholar] [CrossRef] [Green Version]
- DePaolo, D.J.; Wasserburg, G.J. The sources of island arcs as indicated by Nd and Sr isotopic studies. Geophys. Res. Lett. 1977, 4, 465–468. [Google Scholar] [CrossRef] [Green Version]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society Publications: London, UK, 1989; pp. 313–345. [Google Scholar]
- Zindler, A.; Hart, S. Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Kuritani, T.; Ohtani, E.; Kimura, J.-I. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nat. Geosci. 2011, 4, 713–716. [Google Scholar] [CrossRef]
- Chung, S.L.; Yang, T.F.; Chen, S.J.; Chen, C.H.; Lee, T.; Chen, C.H. Sr―Nd isotope compositions of high-pressure megacrysts and a lherzite inclusion in alkali basalts from western Taiwan. J. Geol. Soc. China. 1995, 38, 15–24. [Google Scholar]
- Barry, T.L.; Kent, R.W. Cenozoic magmatism in Mongolia and the origin of Central and East Asian basalts. In Mantle Dynamics and Plate Interactions in East Asia; Flower, M.F.J., Chung, S.L., Lo, C.H., Lee, T.Y., Eds.; American Geophysical Union: Washington, DC, USA, 1998; pp. 347–364. [Google Scholar]
- Hart, S.R. A large isotope anomaly in the southern hemisphere mantle. Nature 1984, 309, 753–757. [Google Scholar] [CrossRef]
- Guo, P.; Ionov, D.A.; Xu, W.L.; Wang, C.G.; Luan, J.P. Mantle and recycled oceanic crustal components inmantle xenoliths from northeastern China and their mantle sources. J. Geophys. Res. Solid Earth 2020, 125, e2019JB018232. [Google Scholar] [CrossRef]
- Danyushevsky, L.V.; Della-Pasqua, F.N.; Sokolov, S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: Petrological implications. Contrib. Mineral. Petrol. 2000, 138, 68–83. [Google Scholar] [CrossRef] [Green Version]
- Danyushevsky, L.V.; Sokolov, S.; Falloon, T.J. Melt inclusions in olivine phenocrysts: Using diffusive re-equilibration to determine the cooling history of a crystal, with implications for the origin of olivine-phyric volcanic rocks. J. Petrol. 2002, 43, 1651–1671. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.S.; Scott, R.W.; Wan, X.Q.; Graham, S.A.; Huang, Y.J.; Wang, P.J.; Wu, H.C.; Dean, W.E.; Zhang, L.M. Late Cretaceous climate changes recorded in Eastern Asian lacustrine deposits and North American Epieric sea strata. Earth Sci. Rev. 2013, 126, 275–299. [Google Scholar] [CrossRef]
- Sato, H. Nickel content of basaltic magmas: Identification of primary magmas and a measure of the degree of olivine fractionation. Lithos 1977, 10, 113–120. [Google Scholar] [CrossRef]
- Thompson, R.N.; Gibson, S.A. Transient high temperatures in mantle plume heads inferred from magnesian olivines in Phanerozoic picrites. Nature 2000, 407, 502–506. [Google Scholar] [CrossRef] [PubMed]
- Sobolev, A.V.; Hofmann, A.W.; Kuzmin, D.V.; Yaxley, G.M.; Arndt, N.T.; Chung, S.L.; Danyushevsky, L.V.; Elliott, T.; Frey, F.A.; Garcia, M.O. The amount of recycled crust in sources of mantle-derived melts. Science 2007, 316, 412. [Google Scholar] [CrossRef]
- McDonough, W.F. Constraints on the composition of the continental lithospheric mantle. Earth Planet. Sci. Lett. 1990, 101, 1–18. [Google Scholar] [CrossRef]
- Smith, E.I.; Sanchez, A.; Walker, J.D.; Wang, K. Geochemistry of maficmagmas in the Hurricane Volcanic field, Utah: Implications for small-and large-scale chemical variability of the lithospheric mantle. J. Geol. 1999, 107, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Treatise Geochem. 2003, 3, 1–64. [Google Scholar]
- Pearce, J.A. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos 2008, 100, 14–48. [Google Scholar] [CrossRef]
- Murphy, D.T.; Collerson, K.D.; Kamber, B.S. Lamproites from Gaussberg, Antarctica: Possible transition zonemelts of Archaean subducted sediments. J. Petrol. 2002, 43, 981–1001. [Google Scholar] [CrossRef]
- Zhang, M.L.; Guo, Z.F. Origin of Late Cenozoic Abaga–Dalinuoer basalts, eastern China: Implications for a mixed pyroxenite–peridotite source related with deep subduction of the Pacific slab. Gondwana Res. 2016, 37, 130–151. [Google Scholar] [CrossRef]
- Kuritani, T.; Kimura, J.I.; Ohtani, E.; Miyamoto, H.; Furuyama, K. Transition zone origin of potassic basalts from Wudalianchi volcano, northeast China. Lithos 2013, 156–159, 1–12. [Google Scholar] [CrossRef]
- Plank, T. The chemical composition of subducting sediments. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2014; pp. 607–629. [Google Scholar]
- Li, S.G.; Yang, W.; Ke, S.; Meng, X.N.; Tian, H.C.; Xu, L.J.; He, Y.; Huang, J.; Wang, X.C.; Xia, Q.; et al. Deep carbon cycles constrained by a large-scale mantle Mg isotope anomaly in eastern China. Natl. Sci. Rev. 2017, 4, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Xia, Q.K.; Deloule, E.; Ingrin, J. Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts. J. Earth Sci. 2017, 28, 578–587. [Google Scholar] [CrossRef]
- Huang, J.L.; Zhao, D.P. High-resolution mantle tomography of China and surrounding regions. J. Geophys. Res. 2006, 111, B09305. [Google Scholar] [CrossRef]
- Wei, W.; Zhao, D.; Xu, J.; Wei, F.; Liu, G. P and S wave tomography and anisotropy in Northwest Pacific and East Asia: Constraints on stagnant slab and intraplate volcanism. J. Geophys. Res. 2015, 120, 1642–1666. [Google Scholar] [CrossRef]
- Xu, R.; Liu, Y.S.; Wang, X.H.; Zong, K.Q.; Hu, Z.C.; Chen, H.H.; Zhou, L. Crust recycling induced compositional-temporal-spatial variations of Cenozoic basalts in the Trans-North China Orogen. Lithos 2017, 274, 383–396. [Google Scholar] [CrossRef]
- Takahashi, E.; Kushiro, I. Melting of a dry peridotite at high pressures and basalt magma genesis. Am. Mineral. 1983, 68, 859–879. [Google Scholar]
- Kushiro, I. Partial melting experiments on peridotite and origin of mid-ocean ridge basalt. Annu. Rev. Earth Planet. Sci. 2001, 29, 71–107. [Google Scholar] [CrossRef]
- DePaolo, D.J.; Daley, E.E. Neodymium isotopes in basalts of the southwest basin and range and lithospheric thinning during continental extension. Chem. Geol. 2000, 169, 157–185. [Google Scholar] [CrossRef]
- Langmuir, C.H.; Klein, E.M.; Plank, T. Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges; Morgan, J.P., Blackman, D.K., Sinton, J.M., Eds.; Geophysical Monograph Series; AGU: Washington, DC, USA, 1992. [Google Scholar]
- Johnson, K.T.M.; Dick, H.J.B.; Shimizu, N. Melting in the oceanic upper mantle: An ion microprobe study of diopsides in abyssal peridotites. J. Geophys. Res. 1990, 95, 2661–2678. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.C.; Mahoney, J.J.; Mao, J.W.; Wang, F.S. Geochemistry of picritic and associated basalt flows of the western Emeishan flood basalt province, China. J. Petrol. 2006, 47, 1997–2019. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, D. Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim. Cosmochim. Acta 1978, 42, 547–569. [Google Scholar] [CrossRef]
- Wilde, A.; Otto, A.; Jory, J.; MacRae, C.; Pownceby, M.; Wilson, N.; Torpy, A. Geology and mineralogy of uranium deposits from Mount Isa, Australia: Implications for albitite uranium deposit models. Minerals 2013, 3, 258–283. [Google Scholar] [CrossRef]
- Peng, X.; Min, M.; Qiao, H.; Wang, J.; Fayek, M. Uranium-series disequilibria in the groundwater of the Shihongtan sandstone-hosted uranium deposit, NW China. Minerals 2016, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- René, M.; Dolníček, Z.; Sejkora, J.; Škácha, P.; Šrein, V. Uraninite, coffinite and ningyoite from vein-type uranium deposits of the Bohemian Massif (Central European Variscan Belt). Minerals 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- Gigon, J.; Skirrow, R.G.; Harlaux, M.; Richard, A.; Mercadier, J.; Annesley, I.R.; Villeneuve, J. Insights into B-Mg-metasomatism at the Ranger U deposit (NT, Australia) and comparison with Canadian unconformity-related U deposits. Minerals 2019, 9, 432. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Pan, J.; Xia, F.; Huang, G.; Lai, J. The mineral chemistry of chlorites and its relationship with uranium mineralization from Huangsha uranium mining area in the middle Nanling range, SE China. Minerals 2019, 9, 199. [Google Scholar] [CrossRef] [Green Version]
- Finch, W.I.; Davis, J.F. Sandstone-type uranium deposits-an introduction. In Geological Environments of Sandstone-Type Uranium Deposits; TECDOC-328; IAEA: Vienna, Austria, 1985; pp. 11–20. [Google Scholar]
- Jiao, Y.Q.; Wu, L.Q.; Yang, S.K.; Lü, X.B.; Yang, Q.; Wang, Z.H.; Wang, M.F. Sedimentology of uranium reservoir. In The Exploration and Production Base of Sandstone-Type Uranium Deposits; Geology Publishing House: Beijing, China, 2006; p. 331. (In Chinese) [Google Scholar]
- Rallakis, D.; Michels, R.; Brouand, M.; Parize, O.; Cathelineau, M. The role of organic matter on uranium precipitation in Zoovch Ovoo, Mongolia. Minerals 2019, 9, 310. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.G.; Li, H.Y.; Hong, L.B.; Ma, L.; Ma, Q.; Sun, M.D. Generation of Cenozoic intraplate basalts in the big mantle wedge under eastern Asia. Sci. China Earth Sci. 2018, 61, 869–886. [Google Scholar] [CrossRef]
- Tappa, M.J.; Ayuso, R.A.; Bodnar, R.J.; Aylor, J.G.; Beard, J.; Henika, W.S.; Vazquez, J.A.; Wooden, J.L. Age of host rocks at the Coles Hill uranium deposit, Pittsylvania county, Virginia, based on zircon U-Pb geochronology. Econ. Geol. 2013, 109, 513–530. [Google Scholar] [CrossRef]
- Li, Z.Y.; Fang, X.Y.; Chen, A.P.; Ou, G.X.; Xiao, X.J.; Sun, Y.; Liu, C.Y.; Wang, Y. Origin of gray-green sandstone in ore bed of sandstone type uranium deposit in north Ordos Basin. Sci. China Ser. D Earth Sci. 2007, 50, 165–173, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ding, B.; Liu, H.X.; Zhang, B.; Yi, C.; Wang, G.; Li, P. Formation mechanism of tabular orebody in Nalinggou uranium deposit, Ordos Basin: Constraints on study of clay minerals from ore-bearing sandstone. Miner. Depos. 2020, 39, 184–195, (In Chinese with English Abstract). [Google Scholar]
- Zhou, H.P.; Zhang, K.; Li, G. Early Cretaceous tectonic-thermal event of the Ordos Basin: Evidence from the Ar-Ar dating of the Hangjinqi basalts. Geotecton. Metallog. 2008, 3, 360–364, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.; Yi, C.; Dong, Q.; Cai, Y.Q.; Liu, H.X. Geological and geochronological evidence for the effect of Paleogene and Miocene uplift of the Northern Ordos Basin on the formation of the Dongsheng uranium district, China. J. Geodyn. 2018, 14, 1–18. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, D.-G.; Wu, J.-H.; Nie, F.-J.; Bonnetti, C.; Xia, F.; Yan, Z.-B.; Cai, J.-F.; Wang, C.-D.; Wang, H.-T. Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits. Minerals 2020, 10, 1014. https://doi.org/10.3390/min10111014
Yang D-G, Wu J-H, Nie F-J, Bonnetti C, Xia F, Yan Z-B, Cai J-F, Wang C-D, Wang H-T. Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits. Minerals. 2020; 10(11):1014. https://doi.org/10.3390/min10111014
Chicago/Turabian StyleYang, Dong-Guang, Jian-Hua Wu, Feng-Jun Nie, Christophe Bonnetti, Fei Xia, Zhao-Bin Yan, Jian-Fang Cai, Chang-Dong Wang, and Hai-Tao Wang. 2020. "Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits" Minerals 10, no. 11: 1014. https://doi.org/10.3390/min10111014
APA StyleYang, D. -G., Wu, J. -H., Nie, F. -J., Bonnetti, C., Xia, F., Yan, Z. -B., Cai, J. -F., Wang, C. -D., & Wang, H. -T. (2020). Petrogenetic Constraints of Early Cenozoic Mafic Rocks in the Southwest Songliao Basin, NE China: Implications for the Genesis of Sandstone-Hosted Qianjiadian Uranium Deposits. Minerals, 10(11), 1014. https://doi.org/10.3390/min10111014