Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China
Abstract
:1. Introduction
2. Regional Geological Settings and Ore Deposit Geology
3. Analytical Methods
4. Results
4.1. Major Element Chemistry
4.2. Trace Element Chemistry
5. Discussion
5.1. Identification of Reduced Skarn System
5.2. Trace Element Incorporation Mechanism
5.3. Fluid Evolution and Metasomatic Dynamics
5.4. Formation of Garnets in the Dynamic Skarn System
6. Conclusions
- 1)
- Two generations of garnet have been identified for the Zhuxiling W (Mo) skarn: Gt-I generation garnet is Al-rich grossular (Adr3-46Grs49-96 (Sps+Pyr+Alm)1-5) and Gt-II generation garnet is Fe-rich andradite. The proximal exoskarn Gt-IIA type garnet is more Fe-rich andradite (Adr37-85Grs4-58(Sps+Pyr+Alm)4-19) than Gt-IIB andradite (Adr8-60Grs18-47 (Sps+Pyr+Alm)11-68), whereas Gt-IIB garnet is Mn-rich, with spessartine and almandine molecule contents as high as 56%–68%. The presence of pyrrhotite associated with subcalcic garnet indicates a relatively reduced tungsten skarn system.
- 2)
- Both W and Sn strongly favor Fe-rich garnet compared with Al-rich garnet. Gt-IA grossular garnet presents a flat REE trend and Gt-IB grossular has a distinct REE pattern with enriched HREE. Gt-IIA andradite garnet displays a right-dipping REE trend with a prominent positive Eu anomaly. In comparison, Gt-IIB andradite garnet features depleted LREE and enriched HREE with weak positive Eu anomaly. The REE fractionation of Gt-IB grossular garnet is predominantly controlled by YAG-type substitution, whereas Gt-IA and Gt-II garnets are collectively controlled by crystal chemistry and the external P–T–X condition of fluids.
- 3)
- The first generation Al-rich grossular garnets grow slowly under a closed system, whereas the latter formed Fe-rich andradite garnets represent rapid growth garnet associated with magmatic fluids in an open system. Garnet shows compositional changes with a decrease of Fe and an increase of Mn from proximal skarn (Gt-IIA garnet) to distal skarn (Gt-IIB garnet) due to more active fluid–rock interaction with Mn-rich dolomitic limestone of the Lantian Group in the district.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meinert, L.D.; Dipple, G.M.; Nicolescu, S. World skarn deposits. In Economic Geology 100th Anniversary Volume; Hedenquist, J.W., Thompson, J.F.H., Goldfarb, R.J., Richards, J.P., Eds.; Society of Economic Geologists: Littleton, CO, USA, 2005; pp. 299–336. [Google Scholar]
- Zaw, K.; Singoyi, B. Formation of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: Evidence from mineral chemistry and stable isotopes. Econ. Geol. 2000, 95, 1215–1230. [Google Scholar] [CrossRef]
- Gaspar, M.; Knaack, C.; Meinert, L.D.; Moretti, R. REE in skarn systems: A LA–ICP–MS study of garnets from the crown jewel gold deposit. Geochim. Cosmochim. Acta 2008, 72, 185–205. [Google Scholar] [CrossRef]
- Ding, T.; Ma, D.S.; Lu, J.J.; Zhang, R.Q. Garnet and scheelite as indicators of multi-stage tungsten mineralization in the Huangshaping deposit, southern Hunan province, China. Ore Geol. Rev. 2018, 94, 193–211. [Google Scholar] [CrossRef]
- Xiao, X.; Zhou, T.F.; Noel, C.W.; Zhang, L.J.; Fan, Y.; Wang, F.Y.; Chen, X.F. The formation and trace elements of garnet in the skarn zone from the Xinqiao Cu-S-Fe-Au deposit, Tongling ore district, Anhui Province, Eastern China. Lithos 2018, 302–303, 467–479. [Google Scholar] [CrossRef]
- Smith, M.P.; Henderson, P.; Jeffries, T.E.R.; Long, J.; Williams, C.T. The rare earth elements and uranium in garnets from the Beinnan Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system. J. Petrol. 2004, 45, 457–484. [Google Scholar] [CrossRef] [Green Version]
- Somarin, A.K. Garnet composition as an indicator of Cu mineralization: Evidence from skarn deposits of NW Iran. J. Geochem. Explor. 2004, 81, 47–57. [Google Scholar] [CrossRef]
- Park, C.P.; Song, Y.G.; Kang, I.M.; Shim, J.; Chung, D.H.; Park, C.S. Metasomatic changes during periodic fluid flux recorded in grandite garnet from the Weondong Wskarn deposit, South Korea. Chem. Geol. 2017, 451, 135–153. [Google Scholar] [CrossRef]
- Zhou, J.H.; Feng, C.Y.; Li, D.X. Geochemistry of the garnets in the Baiganhu W-Sn orefield, NW China. Ore Geol. Rev. 2017, 82, 70–92. [Google Scholar] [CrossRef]
- Yang, Y.L.; Ni, P.; Wang, Q.; Wang, J.Y.; Zhang, X.L. In situ LA-ICP-MS study of garnets in the Makeng Fe skarn deposit, eastern China: Fluctuating fluid flow, ore-forming conditions and implication for mineral exploration. Ore Geol. Rev. 2020, 126, 103725. [Google Scholar] [CrossRef]
- Mao, J.W.; Xiong, B.K.; Liu, J.; Pirajno, F.; Cheng, Y.B.; Ye, H.S.; Song, S.W.; Dai, P. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit Jiangnan tungsten ore belt, China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos 2017, 296–297, 35–52. [Google Scholar] [CrossRef]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Eavans, N.J.; Chen, L. Scheelite elemental and isotopic signatures: Implications for the genesis of skarn-type W(Mo) deposits in the Chizhou Area, Anhui Province, Eastern China. Am. Mineral. 2014, 99, 303–317. [Google Scholar] [CrossRef]
- Song, G.X.; Qin, K.Z.; Li, G.M.; Li, X.; Qu, W. Geochronology and ore-forming fluids of the Baizhangyan W-Mo Deposit in the Chizhou Area, Middle-Lower Yangtze Valley, SE China. Res. Geol. 2013, 63, 57–71. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Zhou, T.F.; Yuan, F.; Fan, Y.; Chen, X.F.; White, N.C.; Ding, N.; Jiang, Q.S. Petrogenesis and W(Mo) fertility indicators of the Gaojiabang “satellite” granodiorite porphyry in southern Anhui Province, South China. Ore Geol. Rev. 2017, 88, 550–564. [Google Scholar] [CrossRef]
- Su, Q.W.; Mao, J.W.; Wu, S.H.; Zhang, Z.C.; Xu, S.F. Geochronology and geochemistry of the granitoids and ore-forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization. Lithos 2018, 296–299, 365–381. [Google Scholar] [CrossRef]
- Wang, X.L.; Zhou, J.C.; Griffin, W.L.; Wang, R.C.; Qiu, J.S.; O’Reilly, S.Y.; Xu, X.S.; Liu, X.M.; Zhang, G.L. Detrital zircon geochronology of Precambrian basement sequences in the Jiangnan orogen: Dating the assembly of the Yangtze Cathaysia blocks. Precambrian Res. 2007, 159, 117–131. [Google Scholar] [CrossRef]
- Zhang, C.L.; Santosh, M.; Zou, H.B.; Li, H.K.; Huang, W.C. The Fuchuan ophiolite in Jiangnan Orogen: Geochemistry, zircon U-Pb geochronology, Hf isotope and implications for the Neoproterozoic assembly of South China. Lithos 2013, 179, 263–274. [Google Scholar] [CrossRef]
- Yao, J.; Shu, L.; Santosh, M.; Li, J. Neoproterozoic arc–related andesite and orogeny–related unconformity in the eastern Jiangnan orogenic belt: Constraints on the assembly of the Yangtze and Cathaysia blocks in South China. Precambrian Res. 2015, 262, 80–100. [Google Scholar] [CrossRef]
- Mao, Z.H.; Liu, J.J.; Mao, J.W.; Deng, J.; Zhang, F.; Meng, X.Y.; Xiong, B.K.; Xiang, X.K.; Luo, X.H. Geochronology and geochemistry of granitoids related to the giant Dahutang tungsten deposit, middle Yangtze River region, China: Implications for petrogenesis, geodynamic setting, and mineralization. Gondwana Res. 2015, 29, 816–836. [Google Scholar] [CrossRef]
- Geological Survey of Anhui Province (GSAP). Geological Report of the Anhui Tungsten (Tin and Molybdenum) Mineral Resources Potential Evaluation; Geological Survey of Anhui Province (GSAP): Anhui, China, 2011; p. 263. [Google Scholar]
- Ding, N. Metallogenic Regularity of Tungsten Deposits in Anhui Province. Master’s Thesis, Hefei University of Technology, Hefei, China, 2012; p. 154. (In Chinese). [Google Scholar]
- Yan, J.; Hou, T.J.; Wang, A.G.; Wang, D.E.; Zhang, D.Y.; Weng, W.F.; Liu, J.M.; Liu, X.Q.; Li, Q.Z. Petrogenetic contrastive studies on the Mesozoic early stage ore-bearing and late stage ore-barren granites from the southern Anhui Province. Sci. China Earth Sci. 2017, 60, 1920–1941. [Google Scholar] [CrossRef]
- Zhou, T.F.; Wang, S.W.; Fan, Y.; Yuan, F.; Zhang, D.Y.; White, N.C. A review of the intracontinental porphyry deposits in the Middle-Lower Yangtze River Valley metallogenic belt, Eastern China. Ore Geol. Rev. 2015, 65, 433–456. [Google Scholar] [CrossRef]
- Huang, M. Metallogenetic Ages and Geochemical Characteristics of Zhuxiling W-Ag Polymetallic Deposit in Ningguo City, Southern Anhui Province. Master’s Thesis, Hefei University of Technology, Hefei, China, 2017; p. 64. (In Chinese). [Google Scholar]
- Chen, X.F.; Wang, Y.G.; Sun, W.D.; Yang, X.Y. Zircon U-Pb chronology, geochemistry and genesis of the Zhuxiling granite in Ningguo, Southern Anhui. Acta Geol. Sin. 2013, 87, 1662–1678. (In Chinese) [Google Scholar]
- Wang, Y.; van den Kerkhof, A.; Xiao, Y.; Sun, H.; Yang, X.; Lai, J.; Wang, Y. Geochemistry and fluid inclusions of scheelite-mineralized granodiorite porphyries from southern Anhui Province, China. Ore Geol. Rev. 2017, 89, 988–1005. [Google Scholar] [CrossRef]
- Duan, X.X.; Chen, B.; Sun, K.K.; Wang, Z.Q.; Yan, X.; Zhang, Z. Accessory mineral chemistry as a monitor of petrogenetic and metallogenetic processes: A comparative study of zircon and apatite from Wushan Cu- and Zhuxiling W(Mo)-mineralization-related granitoids. Ore Geol. Rev. 2019, 111, 102940. [Google Scholar] [CrossRef]
- Chen, J.; Halls, C.; Stanley, C.J. Tin-bearing skarns of South China: Geological setting and mineralogy. Ore Geol. Rev. 1992, 7, 225–248. [Google Scholar] [CrossRef]
- Yao, Y.; Chen, J.; Lu, J.J.; Zhang, R.Q.; Zhao, L.H. Composition, trace element and infrared spectrum of garnet from three types of W-Sn bearing skarns in the South of China. Acta Mineral. Sin. 2013, 33, 315–329. (In Chinese) [Google Scholar]
- Van Westrenen, W.; Allan, N.L.; Blundy, J.D.; Purton, J.A.; Wood, B.J. Atomistic simulation of trace element incorporation into garnets-comparison with experimental garnet-melt partitioning data. Geochim. Cosmochim. Acta 2000, 64, 1629–1639. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Newberry, R.J.; Einaudi, M. T Tectonic and geochemical setting of tungsten skarn mineralization in the Cordillera. Ariz. Geol. Soc. Dig. 1981, 14, 99–111. [Google Scholar]
- Butler, B.C.M. Tin-rich garnet, pyroxene, and spinel from a slag. Mineral. Mag. 1978, 42, 487–492. [Google Scholar] [CrossRef]
- Amthauer, G.; McIver, J.R.; Viljoen, E.A. 57Fe and 119Sn Mössbauer studies of natural tin-bearing garnets. Phys. Chem. Miner. 1979, 4, 235–244. [Google Scholar] [CrossRef]
- McIntire, W.L. Trace element partition coefficients—A review of theory and applications to geology. Geochim. Cosmochim. Acta 1963, 27, 1209–1264. [Google Scholar] [CrossRef]
- Jamtveit, B.; Hervig, R.L. Constraints on transport and kinetics in hydrothermal systems from zoned garnet crystals. Science 1994, 263, 505–508. [Google Scholar] [CrossRef] [PubMed]
- Chernoff, C.B.; Carlson, W.D. Trace element zoning as a record of chemical disequilibrium during garnet growth. Geology 1999, 27, 555–558. [Google Scholar] [CrossRef]
- Bau, M. Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chem. Geol. 1991, 93, 219–230. [Google Scholar] [CrossRef]
- Allen, D.E.; Seyfried, W.E. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure. Geochim. Cosmochim. Acta 2005, 69, 675–683. [Google Scholar] [CrossRef]
- Nicolescu, S.; Cornell, D.H.; Sodervall, U.; Odelius, H. Secondary ion mass spectrometry analysis of rare earth elements in grandite garnet and other skarn related silicates. Eur. J. Mineral. 1998, 10, 251–259. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and calcogenides. Acta Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Jamtveit, B.; Wogelius, R.A.; Fraser, D.G. Zonation patterns of skarn garnets: Records of hydrothermal system evolution. Geology 1993, 21, 113–116. [Google Scholar] [CrossRef]
- Jamtveit, B. Oscillatory zonation patterns in hydrothermal grossular-andradite garnet. Nonlinear dynamics in regions of immiscibility. Am. Mineral. 1991, 76, 1319–1327. [Google Scholar]
- Kravchuk, I.F.; Ivanova, G.F.; Varezhkina, N.S.; Malinin, S.D. REE fractionation in acid fluid-magma systems. Geochem. Intern. 1995, 32, 60–68. [Google Scholar]
- Reed, M.J.; Candela, P.A.; Piccoli, P.M. The distribution of rare earth elements between monzogranitic melt and the aqueous volatile phase in experimental investigations at 800 C and 200 MPa. Contrib. Mineral. Petrol. 2000, 140, 251–262. [Google Scholar] [CrossRef]
- Yang, X.M. Using Rare Earth Elements (REE) to decipher the origin of ore fluids associated with granite intrusions. Minerals 2019, 9, 426. [Google Scholar] [CrossRef] [Green Version]
- Mayanovic, R.A.; Anderson, A.J.; Bassett, W.A.; Chou, I.M. On the formation and structure of rare-earth element complexes in aqueous solutions under hydrothermal conditions with new data on gadolinium aquo and chloro complexes. Chem. Geol. 2007, 239, 266–293. [Google Scholar] [CrossRef]
- Migdisov, A.A.; Williams-Jones, A.E. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Miner. Depos. 2014, 49, 987–997. [Google Scholar] [CrossRef]
- Xing, Y.; Etschmann, B.; Liu, W.; Mei, Y.; Testemale, D.; Shvarov, Y.; Tomkins, A.; Brugger, J. The role of fluorine in hydrothermal mobilization and transportation of Fe, U and REE and the formation of IOCG deposits. Chem. Geol. 2019, 504, 158–176. [Google Scholar] [CrossRef]
- Rolland, Y.; Cox, S.; Boullier, A.-M.; Pennacchioni, G.; Mancktelow, N. Rare earth and trace element mobility in mid-crustal shear zones: Insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci. Lett. 2003, 214, 203–219. [Google Scholar] [CrossRef]
- Moretti, R.; Ottonello, G. An appraisal of endmember energy and mixing properties of the rare earth garnets. Geochim. Cosmochim. Acta 1998, 62, 1147–1173. [Google Scholar] [CrossRef]
- Einaudi, M.T.; Meinert, L.D.; Newberry, R.J. Skarn deposits. Econ. Geol. 1981, 75, 317–391. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, X.-X.; Ju, Y.-F.; Chen, B.; Wang, Z.-Q. Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China. Minerals 2020, 10, 1024. https://doi.org/10.3390/min10111024
Duan X-X, Ju Y-F, Chen B, Wang Z-Q. Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China. Minerals. 2020; 10(11):1024. https://doi.org/10.3390/min10111024
Chicago/Turabian StyleDuan, Xiao-Xia, Ying-Fu Ju, Bin Chen, and Zhi-Qiang Wang. 2020. "Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China" Minerals 10, no. 11: 1024. https://doi.org/10.3390/min10111024
APA StyleDuan, X. -X., Ju, Y. -F., Chen, B., & Wang, Z. -Q. (2020). Garnet Geochemistry of Reduced Skarn System: Implications for Fluid Evolution and Skarn Formation of the Zhuxiling W (Mo) Deposit, China. Minerals, 10(11), 1024. https://doi.org/10.3390/min10111024