Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of H2O-NaCl-CaCl2 Solutions and Synthetic Fluid Inclusions
2.2. Data Acquisition
2.3. Data Processing
2.3.1. Recognition of Representative Peaks
2.3.2. Curve-Fitting of the Spectra
- (a)
- Under the menu of “Processing”, click on two points connecting the start and end of each portion to make a straight baseline subtraction;
- (b)
- Under the menu of “Analysis”, select peaks of 3090 cm−1 and 3216 cm−1 to do curve fitting in portion 1 (note peak 3090 cm−1 is the representative peak of ice), and select peaks of 3385 cm−1, 3405 cm−1, 3422 cm−1, 3437 cm−1, 3471 cm−1, and 3537 cm−1 to do curve fitting in portion 2 (note peak 3385 cm−1 and 3537 cm−1 are representative peaks of antarcticite and hydrohalite, respectively).
2.3.3. Transformation of Distribution Maps
2.3.4. Calculation of Area Fraction
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Roedder, E. Fluid inclusions. Rev. Mineral. 1984, 12, 644. [Google Scholar]
- Roedder, E.; Bodnar, R.J. Fluid inclusion studies of hydrothermal deposits. In Geochemistry of Hydrothermal Ore Deposits, 3rd ed.; Barnes, H.L., Ed.; John Wiley & Sons: New York, NY, USA, 1997; pp. 657–698. [Google Scholar]
- Frezzotti, M.L.; Tecce, F.; Casagli, A. Raman spectroscopy for fluid inclusion analysis. J. Geochem. Explor. 2012, 112, 1–20. [Google Scholar] [CrossRef]
- Franks, F. Water, a Comprehensive Treatise. In Water in Crystalline Hydrates Aqueous Solutions of Simple Noneletrolytes; Plenum Press: New York, NY, USA, 1973; Volume 2, p. 661. [Google Scholar]
- Dubessy, J.; Audeoud, D.; Wilkins, R.; Kosztolanyi, C. The use of the Raman microprobe Mole in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions. Chem. Geol. 1982, 37, 137–150. [Google Scholar] [CrossRef]
- Dubessy, J.; Boiron, M.C.; Moissette, A.; Monnin, C.; Stretenskaya, N. Determination of water, hydrates and pH in fluid inclusions by micro-Raman spectrometry. Eur. J. Mineral. 1992, 4, 885–894. [Google Scholar] [CrossRef] [Green Version]
- Bakker, R.J. Raman spectra of fluid and crystal mixtures in the system H2O, H2O-NaCl and H2O-MgCl2 at low temperatures: Applications to fluid inclusion research. Can. Mineral. 2004, 42, 1283–1314. [Google Scholar] [CrossRef]
- Ni, P.; Ding, J.; Rao, B. In situ cryogenic Raman spectroscopic studies on the synthetic fluid inclusions in the systems H2O and NaCl-H2O. Chin. Sci. Bull. 2006, 51, 108–114. [Google Scholar] [CrossRef]
- Crawford, M.L. Phase equilibria in aqueous fluid inclusions. Fluid Incl. Appl. Petrol. 1981, 6, 75–100. [Google Scholar]
- Bodnar, R.J. Introduction to aqueous-electrolyte fluid inclusions. Fluid Incl. Anal. Interpret. 2003, 32, 81–100. [Google Scholar]
- Samson, I.M.; Walker, R.T. Cryogenic Raman spectroscopic studies in the system NaCl-CaCl2-H2O and implications for low-temperature phase behavior in aqueous fluid inclusions. Can. Mineral. 2000, 38, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Ni, P.; Ding, J.; Dubessy, J.; Zhang, T. Application of in situ cryogenic Raman spectroscopy to analyze synthetic fluid inclusions in the systems CaCl2-H2O and MgCl2-H2O II: Phase transformation behaviour at lower temperatures. Acta Petrol. Sin. 2008, 24, 1968–1974. [Google Scholar]
- Ding, J.; Ni, P.; Dubessy, J.; Zhang, T. Application of in situ cryogenic Raman spectroscopy to analyze synthetic fluid inclusions in the systems CaCl2-H2O and MgCl2-H2O I: Cryogenic Raman spetra. Acta Petrol. Sin. 2008, 24, 1961–1967. [Google Scholar]
- Baumgartner, M.; Bakker, R.J. CaCl2-hydrate nucleation in synthetic fluid inclusions. Chem. Geol. 2009, 265, 335–344. [Google Scholar] [CrossRef]
- Baumgartner, M.; Bakker, R.J. Raman spectra of ice and salt hydrates in synthetic fluid inclusions. Chem. Geol. 2010, 275, 58–66. [Google Scholar] [CrossRef]
- Dubessy, J.; L’Homme, T.; Boiron, M.C.; Rull, F. Determination of chlorinity in aqueous fluids using Raman spectroscopy of the stretching band of water at room temperature: Application to fluid inclusions. Appl. Spectrosc. 2002, 56, 99–106. [Google Scholar] [CrossRef]
- Chi, G.; Chu, H.; Scott, R.; Chou, I.-M. A new method for determining fluid compositions in the H2O-NaCl-CaCl2 system with cryogenic Raman spectroscopy. Acta Geol. Sin. 2014, 88, 1169–1182. [Google Scholar] [CrossRef]
- Chu, H.; Chi, G. Determining fluid composition in the H2O-NaCl-CaCl2 system with cryogenic Raman spectroscopy: Application to natural fluid inclusions. Acta Geol. Sin. 2015, 89, 894–901. [Google Scholar]
- Chu, H.; Chi, G.; Chou, I.-M. Freezing and melting behaviors of H2O-NaCl-CaCl2 solutions in fused silica capillaries and glass-sandwiched films: Implications for fluid inclusion studies. Geofluids 2016, 16, 518–532. [Google Scholar] [CrossRef] [Green Version]
- Chi, G.; Haid, T.; Quirt, D.; Fayek, M.; Blamey, N.; Chu, H. Petrography, fluid inclusion analysis and geochronology of the End uranium deposit, Kiggavik, Nunavut, Canada. Miner. Depos. 2017, 52, 211–232. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Hung, H.; Shih, P.; Cheng, C.; Ma, Y.; Wu, S. In situ confocal Raman mapping study of a single Ti-assisted ZnO nanowire. Nanoscale Res. Lett. 2010, 5, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Ilchenko, O.; Pilgun, Y.; Kutsyk, A.; Bachmann, F.; Slipets, R.; Todeschini, M.; Okeyo, P.O.; Poulsen, H.F.; Boisen, A. Fast and quantitative 2D and 3D orientation mapping using Raman microscopy. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Korsakov, A.V.; Dieing, T.; Golovin, A.V.; Toporski, J. Raman imaging of fluid inclusions in garnet from UHPM rocks (Kokchetav massif, Northern Kazakhstan). Spectrochim. Acta Part A 2011, 80, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Heim, C.; Lausmaa, J.; Sjovall, P.; Toporski, J.; Dieing, T.; Simon, K.; Hansen, B.T.; Kronz, A.; Arp, G.; Reitner, J.; et al. Ancient microbial activity recorded in fracture fillings from granitic rocks (Aspo Hard Rock Laboratory, Sweden). Geobiology 2012, 10, 280–297. [Google Scholar] [CrossRef] [PubMed]
- Yesiltas, M.; Jaret, S.; Young, J.; Wright, S.P.; Glotch, T.D. Three-dimensional raman tomographic microspectroscopy: A novel imaging technique. Earth Space Sci. 2018, 5, 380–392. [Google Scholar] [CrossRef]
- Kann, B.; Windbergs, M. Chemical imaging of drug delivery systems with structured surfaces–a combined analytical approach of confocal Raman microscopy and optical profilometry. AAPS J. 2013, 15, 505–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Everall, N. Optimising image quality in 2D and 3D confocal Raman mapping. J. Raman Spectrosc. 2014, 45, 133–138. [Google Scholar] [CrossRef]
- Steele-MacInnis, M.; Bodnar, R.J.; Naden, J. Numerical mode to determine the composition of H2O-NaCl-CaCl2 fluid inclusions based on microthermometric and microanalytical data. Geochim. Cosmochim. Acta 2011, 75, 21–40. [Google Scholar] [CrossRef] [Green Version]
- Chi, G.; Ni, P. Equations for calculation of NaCl/(NaCl + CaCl2) ratios and salinities from hydrohalite-melting and ice-melting temperatures in the H2O-NaCl-CaCl2 system. Acta Petrol. Sin. 2007, 23, 33–37. [Google Scholar]
- Chou, I.-M.; Song, Y.; Burruss, R.C. A new method for synthesizing fluid inclusions in fused silica capillary containing organic and inorganic material. Geochim. Cosmochim. Acta 2008, 72, 5217–5231. [Google Scholar] [CrossRef]
- HORIBA Jobin Yvon S.A.S. (HORIBA Scientific Company). What Is Confocal Raman Microscopy? Available online: https://www.horiba.com/cn-/scientific/products/raman-spectroscopy/raman-academy/raman-faqs/ (accessed on 16 October 2020).
- Haynes, F.M. Determination of fluid inclusion composition by sequential freezing. Econ. Geol. 1985, 80, 1436–1439. [Google Scholar] [CrossRef]
Sample No. | Salinity (wt. %) | X(NaCl, m) | X(NaCl, wt) | Tmhh-predicted (°C) |
---|---|---|---|---|
#1 | 15 | 1 | 1.00 | −21.2 |
#2 | 15 | 0.9 | 0.83 | −22.7 |
#3 | 15 | 0.8 | 0.68 | −24.2 |
#4 | 15 | 0.7 | 0.56 | −25.7 |
#5 | 15 | 0.6 | 0.44 | −27.8 |
#6 | 15 | 0.5 | 0.35 | −29.8 |
#7 | 15 | 0.4 | 0.26 | −32.8 |
#8 | 15 | 0.3 | 0.18 | −36.5 |
#9 | 15 | 0.2 | 0.12 | −41.0 |
#10 | 15 | 0.1 | 0.06 | −52.0 |
#11 | 15 | 0 | 0.00 | −50.0 |
Sample NO. | X(NaCl, m) | NaCl·2H2O Area (%) | CaCl2·6H2O Area(%) | NaCl·2H2O Area Fraction |
---|---|---|---|---|
#1 | 1 | 87.4 | 0 | 1 |
#2 | 0.9 | 94.2 | 35.3 | 0.73 |
#3 | 0.8 | 36.9 | 15.9 | 0.70 |
#4 | 0.7 | 95.3 | 43.7 | 0.69 |
#5 | 0.6 | 88.7 | 58.6 | 0.60 |
#6 | 0.5 | 66.1 | 20.4 | 0.76 |
#7 | 0.4 | 51.1 | 50.9 | 0.50 |
#8 | 0.3 | 28.3 | 63.5 | 0.31 |
#9 | 0.2 | 15.0 | 53.9 | 0.22 |
#10 | 0.1 | 7.1 | 39.6 | 0.15 |
#11 | 0 | 0 | 33.9 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, H.; Chi, G.; Xue, C. Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping. Minerals 2020, 10, 1043. https://doi.org/10.3390/min10111043
Chu H, Chi G, Xue C. Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping. Minerals. 2020; 10(11):1043. https://doi.org/10.3390/min10111043
Chicago/Turabian StyleChu, Haixia, Guoxiang Chi, and Chunji Xue. 2020. "Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping" Minerals 10, no. 11: 1043. https://doi.org/10.3390/min10111043
APA StyleChu, H., Chi, G., & Xue, C. (2020). Quantification of Solute Composition in H2O-NaCl-CaCl2 Solutions Using Cryogenic 2D Raman Mapping. Minerals, 10(11), 1043. https://doi.org/10.3390/min10111043