Trace Elements in Apatite as Genetic Indicators of the Evate Apatite-Magnetite Deposit, NE Mozambique
Abstract
:1. Introduction
2. Geological Background
3. Methods
4. Samples
5. Results
5.1. Cathodoluminescence (CL)
5.2. Electron Probe Micro-Analysis (EPMA)
5.3. In-Situ Laser Ablation (LA-ICPMS)
6. Discussion
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Masotti, F.S. Geological characterization of the Evate carbonatite. In Proceedings of the 35th International Geological Congress, Cape Town, South Africa, 27 August–4 September 2016; Abstracts. Curran Associates Inc.: Red Hook, NY, USA. ISBN 978-1-5108-7190-8. [Google Scholar]
- Macey, P.H.; Miller, J.A.; Rowe, C.D.; Grantham, G.H.; Siegfried, P.; Armstrong, R.A.; Kemp, J.; Bacalau, J. Geology of the Monapo Klippe, NE Mozambique and its significance for assembly of central Gondwana. Precambr. Res. 2013, 233, 259–281. [Google Scholar] [CrossRef]
- Cílek, V. Industrial Minerals of Mozambique; Czech Geological Office: Praha, Czech Republic, 1989; pp. 1–334. ISBN 80-7075-027-8. [Google Scholar]
- Hurai, V.; Huraiová, M. Fluid inclusions in apatite indicate low-temperature, metasomatic-infiltration origin of the Evate carbonatite deposit (Mozambique). In Proceedings of the ECROFI XXIII, Leeds, UK, 27–29 June 2015; 2015. Extended Abstract Volume. [Google Scholar]
- Karlsson, J.P. An investigation of the felsic Ramiane Pluton, in the Monapo structure, Northern Mocambique. In Examensarbeten I Geologi Vid Lunds Universitet, Berggrundsgeologi; Lunds Universitet: Lund, Sweden, 2006; Volume 202, pp. 1–37. [Google Scholar]
- Ueda, K.; Jacobs, J.; Thomas, R.J.; Kosler, J.; Jourdan, F.; Matola, R. Delamination-induced late-tectonic deformation and high-grade metamorphism of the Proterozoic Nampula Complex, northern Mozambique. Precambr. Res. 2012, 196–197, 275–294. [Google Scholar] [CrossRef] [Green Version]
- Simon, A.C.; Knipping, J.; Reich, M.; Barra, F.; Deditius, A.P.; Bilenker, L.; Childress, T. Kiruna-type iron oxide-apatite (IOA) and iron oxide copper-gold (IOCG) deposit form by a combination of igneous and magmatic-hydrothermal processes: Evidence from the Chilean Iron Belt. In Metals, Minerals, and Society; Arribas, A.M., Mauk, J.L., Eds.; SEG Special Publication: Littleton, CO, USA, 2018; Volume 21, pp. 89–114. [Google Scholar]
- Nikolenko, A.M.; Redina, A.A.; Doroshkevich, A.G.; Prokopyev, I.R.; Ragozin, A.L.; Vladykin, N.V. The origin of magnetite-apatite rocks of Mushugai-Khudag Complex, South Mongolia: Mineral chemistry and studies of melt and fluid inclusions. Lithos 2018, 320–321, 567–582. [Google Scholar] [CrossRef]
- Hurai, V.; Paquette, J.-L.; Huraiová, M.; Slobodník, M.; Hvožďara, P.; Siegfried, P.R.; Gajdošová, M.; Milovská, S. New insights into the origin of the Evate apatite-iron oxide-carbonate deposit, Northeastern Mozambique, constrained by mineralogy, textures, thermochronometry, and fluid inclusions. Ore Geol. Rev. 2017, 80, 1072–1091. [Google Scholar] [CrossRef]
- Le Bas, M.J. Nephelinites and carbonatites. In Alkaline Igneous Rocks; Fitton, J.G., Upton, B.G.J., Eds.; Geological Society: London, UK, 1987; Volume 30, pp. 85–94. [Google Scholar]
- Bailey, D.K. Carbonate melt from the mantle in the volcanoes of south-east Zambia. Nature 1989, 338, 415–418. [Google Scholar] [CrossRef]
- Woolley, A.R. Alkaline Rocks and Carbonatites of the World. Part 3: Africa; Geological Society London: Middlesex, UK, 2001; pp. 1–372. ISBN 1-86239-083-5. [Google Scholar]
- Siegfried, P.R. The Monapo structure and intrusive complex—An example of large scale alkaline metasomatism in northern Mozambique. In Mineral Deposits: Processes to Processing; Stanley, C.J., Rankin, A.H., Bodnar, R.J., Naden, J., Yardley, B.W.D., Criddle, A.J., Hagni, R.D., Gize, A.P., Pasava, J., Fleet, A.J., et al., Eds.; Balkema: Rotterdam, The Netherlands, 1999; pp. 683–686. [Google Scholar]
- Woolley, A.R.; Kjarsgaard, B.A. Carbonatite Occurrences of the World: Map and Database; Open File 5796; Geological Survey Canada; Natural Resources Canada: Ottawa, ON, Canada, 2008; Volume 28.
- Hurai, V.; Huraiová, M.; Gajdošová, M.; Konečný, P.; Slobodník, M.; Siegfried, P.R. Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana. Mineral. Petrol. 2018, 112, 279–296. [Google Scholar] [CrossRef]
- Stoppa, F.; Liu, Y. Chemical composition and petrogenetic implications of apatites from some ultra-alkaline Italian rocks. Eur. J. Mineral. 1995, 7, 391–402. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Ordering of divalent cations in the apatite structure: Solid solution in the Ca5(PO4)3X (X = F, OH, Cl) system. Am. Mineral. 1991, 75, 295–304. [Google Scholar]
- Rakovan, J.; Reeder, R.J. Intracrystalline rare earth element distributions in apatite: Surface structural influences on inroporation during growth. Geochim. Cosmochim. Acta 1996, 60, 4435–4445. [Google Scholar] [CrossRef]
- Pan, Y.; Fleet, M.E. Composition of the apatite-group minerals: Substitution mechanism and controlling factors. Rev. Mineral. Geochem. 2002, 48, 13–50. [Google Scholar] [CrossRef]
- Gittins, J. The origin and evolution of carbonatite magmas. In Carbonatites: Genesis and Evolution; Bell, K., Ed.; Unwin Hyman: London, UK, 1989; pp. 580–590. [Google Scholar]
- Seifert, W.; Kampf, H.; Wasternack, J. Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: Implication for cooling history of carbonatites. Lithos 2000, 53, 81–100. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- Webster, J.D.; Piccoli, P.M. Magmatic apatite: A powerful, yet deceptive, mineral. Elements 2015, 11, 177–182. [Google Scholar] [CrossRef]
- Bühn, B.; Wall, F.; Le Bas, M.J. Rare-earth element systematics of carbonatitic fluorapatites and their significance for carbonatite magma evolution. Contrib. Mineral. Petrol. 2001, 141, 572–591. [Google Scholar] [CrossRef]
- Teiber, H.; Marks, M.A.W.; Arzamastsev, A.A.; Wenzel, T.; Markl, G. Compositional variation in apatite from various host rocks: Clues with regards to source composition and crystallization conditions. Neues Jrb. Mineral. 2015, 192, 151–167. [Google Scholar] [CrossRef]
- Belousova, E.A.; Griffin, W.L.; O´Reilly, S.Z.; Fisher, N.I. Apatite as an indicator mineral for exploration: Trace element comopositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Mao, M.; Rukhlov, A.S.; Rowins, S.M.; Spence, J.; Coogan, L.A. Apatite trace element compositions: A robust new tool for mineral exploration. Econ. Geol. 2016, 111, 1187–1222. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Zaitsev, A.N.; Couëslan, C.; Xu, C.; Kynický, J.; Mumin, A.H.; Yang, P. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos 2017, 274–275, 188–213. [Google Scholar] [CrossRef] [Green Version]
- Harlov, D.E. Apatite: A fingerprint for metasomatic processes. Elements 2015, 11, 171–176. [Google Scholar] [CrossRef]
- Krneta, S.; Ciobanu, C.L.; Cook, N.J.; Ehrig, K.J. Numerical modeling of REE fractionation patterns in fluorapatite from the Olympic Dam deposit (south Australia). Minerals 2018, 8, 342. [Google Scholar] [CrossRef] [Green Version]
- Pinna, P.; Jourde, G.; Calvez, J.Y.; Mroz, J.P.; Marques, J.M. The Mozambique Belt in northern Mozambique: Neoproterozoic (1100–850 Ma) crustal growth and tectogenesis, and superimposed Pan-African (800–550 Ma) tectonism. Precambr. Res. 1993, 62, 1–59. [Google Scholar] [CrossRef]
- Grantham, G.H.; Macey, P.H.; Ingram, B.A.; Roberts, M.P.; Armstrong, R.A.; Hokada, T.; Shiraishi, K.; Jackson, C.; Bisnath, A.; Manhiça, V. Terrane correlation between Antarctica, Mozambique and Sri Lanka: Comparison of geochronology, lithology, structure and metamorphism and possible implications for the geology of southern Africa and Antarctica. In Geodynamic Evolution of East Antarctica: A Key to the East-West Gondwana Connection; Satish-Kumar, M., Motoyoshi, Y., Osanai, Y., Hiroi, Y., Siraishi, K., Eds.; Geological Society: London, UK, 2008; Volume 308, pp. 91–119. [Google Scholar]
- Grantham, G.H.; Macey, P.H.; Horie, K.; Kawakami, T.; Ishikawa, M.; Satish-Kumar, M.; Tsuchiya, N.; Graser, P.; Azevedo, S. Comparison of the metamorphic history of the Monapo complex, northern Mozambique and Balchenfjella and Austhameren areas, Sor Rondane, Antarctica: Implications for the Kuunga orogeny and the amalgamation of N. and S. Gondwana. Precambr. Res. 2013, 234, 85–135. [Google Scholar] [CrossRef]
- Viola, G.; Henderson, I.H.C.; Bingen, B.; Thomas, R.J.; Smethurst, M.A.; de Azavedo, S. Growth and collapse of a deeply eroded orogen: Insights from structural and geochronological constraints on the Pan-African evolution of NE Mozambique. Tectonics 2008, 27, TC50009. [Google Scholar] [CrossRef]
- Bingen, B.; Jacobs, J.; Viola, G.; Henderson, I.H.C.; Skar, Ø.; Boyd, R.; Thomas, R.J.; Solli, A.; Key, R.M.; Daudi, E.X.F. Geochronology of the Precambrian crust in the Mozambique belt in NE Mozambique, and implications for Gondwana assembly. Precambr. Res. 2009, 170, 231–255. [Google Scholar] [CrossRef]
- Macey, P.H.; Thomas, R.J.; Grantham, G.H.; Ingram, B.A.; Jacobs, J.; Armstrong, R.A.; Roberts, M.P.; Bingen, B.; Hollick, L.; De Kock, G.S.; et al. Mesoproterozoic geology of the Nampula Block, northern Mozambique: Tracing fragments of Mesoproterozoic crust in the heart of Gondwana. Precambr. Res. 2010, 182, 124–148. [Google Scholar] [CrossRef] [Green Version]
- Hurai, V.; Blažeková, M.; Huraiová, M.; Siegfried, P.R.; Slobodník, M.; Konečný, P. Thermobarometric and geochronologic constraints on the emplacement of the Neoproterozoic Evate carbonatite during exhumation of the Monapo granulite complex. Lithos 2020, in press. [Google Scholar] [CrossRef]
- Callaghan, C.C. Mineral resource based growth pole industrialisation—Phosphate Report. In Regional Integration Research Network; TMSA: Burnside, QLD, Australia, 2013; pp. 1–64. [Google Scholar]
- Jamal, D.L. Crustal Studies across Selected Geotransects in NE Mozambique: Differentiating between Mozambiquian (~Kibaran) and Pan-African Events, with Implications for Gondwana Studies. Ph.D. Thesis, University of Cape Town, Rondebosch, South Africa, 2005. [Google Scholar]
- Engvik, A.K.; Bingen, B. Granulite-facies metamorphism of the Palaeoproterozoic—Early Palaeozoic gneiss domains of NE Mozambique, East African Orogen. Geol. Mag. 2017, 154, 491–515. [Google Scholar] [CrossRef]
- Fritz, H.; Abdelsalam, M.; Ali, K.A.; Bingen, B.; Collins, A.S.; Fowler, A.R.; Ghebreab, W.; Hauzenberger, C.A.; Johnson, P.R.; Kusky, T.M.; et al. Orogen styles in the East African orogen: A review of the Neoproterozoic to Cambrian tectonic evolution. J. Afr. Earth Sci. 2013, 86, 65–106. [Google Scholar] [CrossRef]
- Merlet, C. Accurate description of surface ionization in electron probe microanalysis: An improved formulation. X-ray Spectrom. 1992, 21, 229–238. [Google Scholar] [CrossRef]
- Pasero, M.; Kampf, A.R.; Ferraris, C.; Pekov, I.V.; Rakovan, J.; White, T.J. Nomenclature of the apatite supergroup minerals. Eur. J. Mineral. 2010, 22, 163–179. [Google Scholar] [CrossRef]
- Comodi, P.; Liu, Y.; Stoppa, F.; Woolley, A.R. A multi-method analysis of Si-, S- and REE-rich apatite from a new find of kalsilite-bearing leucitite (Abruzzi, Italy). Mineral. Mag. 1999, 63, 661–672. [Google Scholar] [CrossRef]
- Anders, E.; Grevesse, N. Abundances of the elements: Meteoritic and solar. Geochim. Cosmochim. Acta 1989, 53, 197–214. [Google Scholar] [CrossRef]
- Decrée, S.; Boulvais, P.; Tack, L.; André, L.; Baele, J.-M. Fluorapatite in carbonatite-related phosphate deposits: The case of the Matongo carbonatite (Burundi). Mineral. Dep. 2016, 51, 453–466. [Google Scholar] [CrossRef]
- MacRae, C.M.; Wilson, N.C.; Torpy, A.; Davidson, C.J. Hyperspectral cathodoluminescence imaging and analysis extending from ultraviolet to near infrared. Microsc. Microanal. 2012, 18, 1239–1245. [Google Scholar] [CrossRef] [PubMed]
- Barbarand, J.; Pagel, M. Cathodoluminescence study of apatite crystals. Am. Mineral. 2001, 86, 473–484. [Google Scholar] [CrossRef]
- Roedder, P.L.; MacArthur, D.; Ma, X.-A.; Palmer, G.R.; Mariano, A.N. Cathodoluminescence and microprobe study of rare-earth elements in apatite. Am. Mineral. 1987, 72, 801–811. [Google Scholar]
- Arzamastsev, A.; Arzamastseva, L.; Bea, F.; Montero, P. Trace elements in minerals as indicators of the evolution of alkaline ultrabasic dike series: LA-ICP-MS data for the magmatic provinces of northeastern Fennoscandia and Germany. Petrology 2009, 17, 46–72. [Google Scholar] [CrossRef]
- Kogarko, L. Chemical composition and petrogenetic implications of apatite in the Khibiny apatite-nepheline deposits (Kola Peninsula). Minerals 2018, 8, 532. [Google Scholar] [CrossRef] [Green Version]
- Bonyadi, Z.; Davidson, G.J.; Mehrabi, B.; Meffre, S.; Ghazban, F. Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: Insights from paragenesis and geochemistry. Chem. Geol. 2011, 281, 253–269. [Google Scholar] [CrossRef]
- Cao, M.; Li, G.; Qin, K.; Seitmuratova, E.Y.; Liu, Y. Major and trace element characteristics of apatites in granitoids from central Kazakhstan: Implications for petrogenesis and mineralization. Res. Geol. 2011, 62, 63–83. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhou, M.F.; Zhao, T.P. Differentiation of nelsonitic magmas in the formation of the ~1.94 Ga Damiao Fe-Ti-P ore deposit, North China. Contrib. Mineral. Petrol. 2013, 165, 1341–1362. [Google Scholar] [CrossRef]
- Chu, M.F.; Wang, K.L.; Griffin, W.L.; Chung, S.L.; O´Reilly, S.Y.; Pearson, N.J.; Iizuka, Y. Apatite composition: Tracing petrogenesis processes in Transhimalayan granitoids. J. Petrol. 2009, 50, 1829–1855. [Google Scholar] [CrossRef]
- Frietsch, R.; Perdahl, J.-A. Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol. Rev. 1995, 9, 489–510. [Google Scholar] [CrossRef]
- Ziemann, M.A.; Förster, H.J.; Harlov, D.; Frei, D. Origin of fluorapatite-monazite assemblages in metamorphosed, sillimanite-bearing pegmatoid, Reibolt Hills, East Antarctica. Eur. J. Mineral. 2005, 17, 567–579. [Google Scholar] [CrossRef]
- Broom-Fendley, S.; Styles, M.T.; Appleton, J.D.; Gunn, G.; Wall, F. Evidence for dissolution–reprecipitation of apatite and preferential LREE mobility in carbonatite derived late-stage hydrothermal processes. Am. Mineral. 2016, 101, 596–611. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Zhou, X.; Zhang, H. Geochemical and isotopic investigation of the Laiwu–Zibo carbonatites from western Shandong Province, China, and implications for their petrogenesis and enriched mantle source. Lithos 2004, 75, 413–426. [Google Scholar] [CrossRef]
- Zaitsev, A.N.; Chakhmouradian, A.R. Calcite-amphibole-clinopyroxene rock from the Afrikanda complex, Kola Peninsula. Russia: Mineralogy and a possible link to carbonatites. III. Silicate minerals. Can. Mineral. 2002, 43, 1347–1374. [Google Scholar] [CrossRef]
- Chakhmouradian, A.R.; Reguir, E.P.; Kressall, R.D.; Crozier, J.; Pisiak, L.; Sidhu, R.; Yang, P. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geol. Rev. 2015, 64, 642–666. [Google Scholar] [CrossRef]
- Mercer, C.N.; Watts, K.E.; Gross, J. Apatite trace element geochemistry and cathodoluminescent textures—A comparison between regional magmatism and the Pea Ridge IOAREE and Boss IOCG deposits, southeastern Missouri iron metallogenic province, USA. Ore Geol. Rev. 2020, 116, 103129. [Google Scholar] [CrossRef]
- Decrée, S.; Cawthorn, G.; Deloule, E.; Mercadier, J.; Frimme, H.; Baele, J.-M. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contrib. Mineral. Petrol. 2020, 175, 34. [Google Scholar] [CrossRef]
- Mitchell, R.H. Cathodoluminescence of apatite. In Cathodoluminescence and Its Application to Geoscience; Coulson, I.M., Ed.; Mineral Association of Canada Short Course Series; Mineralogical Association of Canada: Quebec City, QC, Canada, 2014; Volume 45, pp. 143–168. [Google Scholar]
- Waychunas, G.A. Apatite luminescence. Rev. Mineral. Geochem. 2002, 48, 701–742. [Google Scholar] [CrossRef]
- Kempe, U.; Götze, J. Cathodoluminescence (CL) behavior and crystal chemistry of apatites from rare-metal deposits. Mineral. Mag. 2002, 66, 151–172. [Google Scholar] [CrossRef]
- deNeufville, J.P.; Kasdan, A.; Chimenti, R.J.L. Selective detection of uranium by laser-induced fluorescence: A potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets. Appl. Optics 1981, 20, 1279–1296. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slobodník, M.; Dillingerová, V.; Blažeková, M.; Huraiová, M.; Hurai, V. Trace Elements in Apatite as Genetic Indicators of the Evate Apatite-Magnetite Deposit, NE Mozambique. Minerals 2020, 10, 1125. https://doi.org/10.3390/min10121125
Slobodník M, Dillingerová V, Blažeková M, Huraiová M, Hurai V. Trace Elements in Apatite as Genetic Indicators of the Evate Apatite-Magnetite Deposit, NE Mozambique. Minerals. 2020; 10(12):1125. https://doi.org/10.3390/min10121125
Chicago/Turabian StyleSlobodník, Marek, Veronika Dillingerová, Michaela Blažeková, Monika Huraiová, and Vratislav Hurai. 2020. "Trace Elements in Apatite as Genetic Indicators of the Evate Apatite-Magnetite Deposit, NE Mozambique" Minerals 10, no. 12: 1125. https://doi.org/10.3390/min10121125
APA StyleSlobodník, M., Dillingerová, V., Blažeková, M., Huraiová, M., & Hurai, V. (2020). Trace Elements in Apatite as Genetic Indicators of the Evate Apatite-Magnetite Deposit, NE Mozambique. Minerals, 10(12), 1125. https://doi.org/10.3390/min10121125