Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Sampling
2.3. Methods of Characterization
3. Results
3.1. Properties of Collophane Ore
3.2. Distribution of Fe and Al in Collophane Ore
3.3. Grain Size Distribution of Main Fe, Al-Bearing Minerals
3.4. The Association between Main Fe, Al-Bearing Minerals and Other Minerals
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- U.S. Geological Survey. Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2019; pp. 122–123.
- Abouzeid, A.-Z.M. Physical and thermal treatment of phosphate ores—An overview. Int. J. Min. Process. 2008, 85, 59–84. [Google Scholar] [CrossRef]
- Özer, A.K.; Gülaboglu, M.; Bayrakcüeken, S. Physical structure and chemical and mineralogical composition of the Mazidagı (Turkey) phosphate rock. Ind. Eng. Chem. Res. 2000, 39, 679–683. [Google Scholar] [CrossRef]
- Aydin, I.; Imamoglu, S.; Aydin, F.; Saydut, A.; Hamamci, C. Determination of mineral phosphate species in sedimentary phosphate rock in Mardin, SE Anatolia, Turkey by sequential extraction. Microchem. J. 2009, 91, 63–69. [Google Scholar] [CrossRef]
- Mohammadkhani, M.; Noaparast, M.; Shafaei, S.Z.; Amini, A.; Amini, E.; Abdollahi, H. Double reverse flotation of a very low grade sedimentary phosphate rock, rich in carbonate and silicate. Int. J. Miner. Process. 2011, 100, 157–165. [Google Scholar] [CrossRef]
- AI-Fariss, T.F.; Ozbelge, H.O.; Abdulrazik, A.M. Flotation of a carbonate rich sedimentary phosphate rock. Fert. Res. 1991, 29, 203–208. [Google Scholar] [CrossRef]
- Nunes, A.P.L.; Peres, A.E.C.; Chaves, A.P.; Ferreira, W.R. Effect of alkyl chain length of amines on fluorapatite and aluminium phosphates floatabilities. J. Mater. Res. Technol. 2019, 8, 3623–3634. [Google Scholar] [CrossRef]
- Hassani, F.; Noaparast, M.; Tonkaboni, S.Z.S. A study on the effect of ultrasound irradiation as pretreatment method on flotation of sedimentary phosphate rock with carbonate–silicate gangue. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 2787–2798. [Google Scholar] [CrossRef]
- Abouzeid, A.-Z.M.; El-Jallad, I.S.; Orphy, M.K. Calcareous phosphates and their calcined products. Miner. Sci. Eng. 1980, 12, 73–83. [Google Scholar]
- Kumar, D. Calcination of phosphate rocks. Chem. Eng. Technol. 1980, 52, 736–740. [Google Scholar] [CrossRef]
- Yousef, A.A.; El-Nozahi, S.M.; Ali, N. Some aspects on the beneficiation of Sebaiya phosphates, Egypt. Erzmetall 1982, 35, 428–431. [Google Scholar]
- Kaljuvee, T.; Kuusik, R.; Veiderma, M. Enrichment of carbonate-phosphate ores by calcination and air separation. Int. J. Miner. Process. 1995, 43, 113–121. [Google Scholar] [CrossRef]
- Amirech, A.; Bouhenguel, M.; Kouachi, S. Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors. Arab. J. Geosci 2018, 11, 593. [Google Scholar] [CrossRef]
- Ge, Y.Y.; Gan, S.P.; Zeng, X.P.; Yu, Y.F. Double reverse flotation process of collophanite and regulating froth action. Trans. Nonferr. Met. Soc. China 2008, 18, 449–453. [Google Scholar] [CrossRef]
- Liu, X.; Luo, H.H.; Cheng, R.J.; Li, C.X.; Zhang, J.H. Effect of citric acid and flotation performance of combined depressant on collophanite ore. Miner. Eng. 2017, 109, 162–168. [Google Scholar] [CrossRef]
- Huang, Z.; Cheng, C.; Liu, Z.; Zeng, H.; Feng, B.; Zhong, H.; Luo, W.; Hu, Y.; Guo, Z.; He, G.; et al. Utilization of a new Gemini surfactant as the collector for the reverse froth flotation of phosphate ore in sustainable production of phosphate fertilizer. J. Clean. Prod. 2019, 221, 108–112. [Google Scholar] [CrossRef]
- Shao, X.; Jiang, C.L.; Parekh, B.K. Enhanced flotation separation of phosphate and dolomite using a new amphoteric collector. Min. Met. Explor. 1998, 15, 11–14. [Google Scholar] [CrossRef]
- Aydin, I.; Aydin, F.; Saydut, A.; Bakirdere, E.G.; Hamamci, C. Hazardous metal geochemistry of sedimentary phosphate rock used for fertilizer (Mazıdag, SE Anatolia, Turkey). Microchem. J. 2010, 96, 247–251. [Google Scholar] [CrossRef]
- Nziguheba, G.; Smolders, E. Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci. Total Environ. 2008, 390, 53–57. [Google Scholar] [CrossRef]
- Yu, J.; Ge, Y.Y.; Guo, W.B.; Guo, X.L. Flotation collophane from high-iron phosphate ore by using sodium ligninsulfonate as depressant. Sep. Sci. Technol. 2016, 03–47. [Google Scholar] [CrossRef]
- Nanthakumar, B.; Grimm, D.; Pawlik, M. Anionic flotation of high-iron phosphate ores-Control of process water chemistry and depression of iron minerals by starch and guar gum. Int. J. Miner. Process. 2009, 92, 49–57. [Google Scholar] [CrossRef]
- Yu, K.P.; Yu, Y.F.; Xu, X.Y. Separation behavior and mechanism of hematite and collophane in the presence of collector RFP-138. Trans. Nonferr. Met. Soc. China 2013, 23, 501–507. [Google Scholar] [CrossRef]
- Guimaraes, R.; Araujo, A.C.D.; Peres, A. Reagents in igneous phosphate ores flotation. Min. Eng. 2005, 18, 109–204. [Google Scholar] [CrossRef]
- Zhao, K.; Gu, G.; Wang, C.; Rao, X.; Wang, X.; Xiong, X. The effect of a new polysaccharide on the depression of talc and the flotation of a nickel-copper sulfide ore. Miner. Eng. 2015, 77, 99–106. [Google Scholar] [CrossRef]
- He, B.B.; Zhang, H.; Fu, Y.; Zhou, Q.B.; Zhao, Z.B.; Peng, Q.S. Feasibility research on reducing sesquioxide content of phosphate and phosphoric acid. Phosphate Compd. Fertil. 2016, 31, 37–38. [Google Scholar] [CrossRef]
- Li, X.; Zhu, G.Y.; Gong, X.K.; Li, S.P.; Xu, W.; Li, H.Q. Occurrence of the Impurities in Phosphorus Rock and the Research of Acidolysis Process. Spectrosc. Spectr. Anal. 2019, 39, 1288–1293. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, T.; Zhao, W.Q.; Zhang, W.S.; Chen, K.X. Research progress of de iron and de aluminum of phosphate rock. Miner. Metall. Eng. 2012, 32, 357–361. [Google Scholar] [CrossRef]
- He, B.H.; Liu, H.; Duan, K.B.; Li, L. Research progress of phosphorite deposits in Guizhou. West. Resour. 2016, 3, 25–30. [Google Scholar] [CrossRef]
- Chen, J.Y.; Zhang, J.; Yang, R.D. Mode of occurrence of rare earth elements in posphorite in Zhijin County, Guizhou Province, China. Acta Mineral. Sin. 2010, 30, 123–129. [Google Scholar] [CrossRef]
- Ye, Y.; Al-Khaledi, N.; Barker, L.; Darwish, M.S.; El Naggar, A.M.; El-Yahyaoui, A.; Hussein, A.; Hussein, E.S.; Shang, D.; Taha, M.; et al. Uranium resources in China’s phosphate rocks—Identifying low-hanging fruits. IOP Conf. Ser. Earth Environ. Sci. 2019, 227, 052033. [Google Scholar] [CrossRef]
- Wu, X.H.; Han, Z.J.; Cai, J.F.; Xiao, Y.L. Phosphorites in Guizhou; Geological Publishing House: Beijing, China, 1999; pp. 24–29. [Google Scholar]
- Wu, J.; Huang, R.X.; Zou, Q.X.; Zhang, Y. Rock falls and their prevention in phosphorus mining area of Kaiyang County, Guizhou province. Chin. J. Geol. Hazard. Control. 2011, 3, 30–35. [Google Scholar]
- Wang, H.S. Kaiyang phosphorite deposit geological features and deep part extended prospecting practices in Guizhou Province. Coal Geol. China 2017, 19, 34–38. [Google Scholar] [CrossRef]
- Tu, Y.Q. An Environment geological impact on the kaiyang phosphorus district in the central guizhou. Guizhou Geol. 1998, 3, 273–276. [Google Scholar]
- Oliveira, C.M.; Machado, C.M.; Duarte, G.W.; Peterson, M. Beneficiation of pyrite from coal mining. J. Clean. Prod. 2016, 139, 821–827. [Google Scholar] [CrossRef]
- Sarvamangala, H.; Natarajan, K.A.; Girisha, S.T. Microbially-induced pyrite removal from galena using Bacillus subtilis. Int. J. Miner. Process. 2013, 120, 15–21. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Tang, Y.G.; Shao, L.Y.; Li, S.S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Li, S.S.; Jiang, Y.F. Mineralogy and geochemistry of the No. 6 coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Berner, R.A. Sedimentary pyrite formation: An update. Geochim. Cosmochim. Acta 1984, 48, 605–615. [Google Scholar] [CrossRef]
- Machel, H.G.; Krouse, H.R.; Sassen, R. Products and distinguishing criteria of bacterial and thermochemical sulfate reduction. Appl. Geochem. 1995, 10, 373–389. [Google Scholar] [CrossRef]
- Dai, S.; Hou, X.; Ren, D.; Tang, Y. Surface analysis of pyrite in the No.9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spectrometry. Int. J. Coal Geol. 2003, 55, 139–150. [Google Scholar] [CrossRef]
- Love, L.G.; Amstutz, G.C. Review of microscopic pyrite from the Devonian Chattanooga Shale and Rammelsberg Banderz. Fortschr Miner. 1966, 43, 273–309. [Google Scholar]
- Wilkin, R.T.; Barnes, H.L.; Brantley, S.L. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochim. Cosmochim. Acta 1996, 60, 3897–3912. [Google Scholar] [CrossRef]
- Kim, T.B.; Choi, J.W.; Ryu, H.S.; Cho, G.B.; Kim, K.W.; Ahn, J.H.; Cho, K.K.; Ahn, H.J. Electrochemical properties of sodium/pyrite battery at room temperature. J. Power Sources 2007, 174, 1275–1278. [Google Scholar] [CrossRef]
- Bulut, G.; Yenial, U.; Emiroglu, E.; Sirkeci, A.A. Arsenic removal from aqueous solution using pyrite. J. Clean. Prod. 2014, 84, 526–532. [Google Scholar] [CrossRef]
- Patra, P.; Natarajan, K.A. Microbially-induced flocculation and flotation for pyrite separation from oxide gangue minerals. Miner. Eng. 2003, 16, 965–973. [Google Scholar] [CrossRef]
- Shukla, S.; Loc, N.H.; Boix, P.P.; Koh, T.M.; Prabhakar, R.R.; Mulmudi, H.K.; Zhang, J.; Chen, S.; Ng, C.F.; Huan, C.H.A.; et al. Iron pyrite thin film counter electrodes for dyesensitized solar cells: High efficiency for iodine and cobalt redox electrolyte cells. ACS Nano 2014, 8, 10597–10605. [Google Scholar] [CrossRef] [PubMed]
- Kraal, P.; Slomp, C.P.; Forster, A.; Kuypers, M.M.M.; Sluijs, A. Pyrite oxidation during sample storage determines phosphorus fractionation in carbonate-poor anoxic sediments. Geochim. Cosmochim. Acta 2009, 73, 3277–3290. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, B.K.; Jena, S.; Mahanta, K.; Mishra, P. Goethite morphology and composition in banded iron formation, Orissa, India. Resour. Geol. 2008, 58, 325–332. [Google Scholar] [CrossRef]
- Jang, K.; Nunna, V.R.M.; Hapugoda, S.; Nguyen, A.V.; Bruckard, W.J. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Min. Eng. 2014, 60, 14–22. [Google Scholar] [CrossRef]
- Ravisankar, V.; Venugopal, R.; Bhat, H. Investigation on beneficiation of goethite-rich iron ores using reduction roasting followed by magnetic separation. Miner. Process. Extr. Metall. Imm Transactions 2017, 1–8. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Bai, J.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 2010, 174, 71–77. [Google Scholar] [CrossRef]
- Li, C.; Sun, H.; Yi, Z.; Li, L. Innovative methodology for comprehensive utilization of iron ore tailings: Part 2: The residues after iron recovery from iron ore tailings to prepare cementitious material. J. Hazard. Mater. 2010, 174, 78–83. [Google Scholar] [CrossRef]
- Fisher-White, M.J.; Lovel, R.R.; Sparrow, G.J. Phosphorus removal from goethitic iron ore with a low temperature heat treatment and a caustic leach. ISIJ Int. 2012, 52, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Ionkov, K.; Gomes, O.; Neumann, R.; Gaydardzhiev, S.; Correa de Araujo, A. Process oriented characterisation of oolitic iron concentrate during dephosphorisation by roasting and leaching. In Proceedings of the XXVIII International Mineral Processing Congress (IMPC 2016), West Westmount, QC, Canada, 10–15 September 2016. [Google Scholar]
- Kokal, H.R.; Singh, M.P.; Naydyonov, V.A. Removal of Phosphorus from Lisakovsky Iron Ore by a Roast Leach Process; John Wiley and Sons, Inc.: New York, NY, USA, 2003; pp. 1517–1530. [Google Scholar]
- Zhang, L.; Machiela, R.; Das, P.; Zhang, M.M.; Eisele, T. Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature. Hydrometallurgy 2018, 184, 95–102. [Google Scholar] [CrossRef]
- Zhang, L.; Ankathi, S.K.; Zhang, M.M.; Eisele, T.C. Bio-extraction of phosphorus from goethite ore with alkali addition. Miner. Eng. 2019, 141, 105850. [Google Scholar] [CrossRef]
- Yellishetty, M.; Ranjith, P.G.; Tharumarajah, A. Iron ore and steel production trends and material flows in the world: Is this really sustainable? Resour. Conserv. Recycl. 2010, 54, 1084–1094. [Google Scholar] [CrossRef]
- Williams, P.J. The use of Aspergillus niger for the Removal of Potassium and Phosphorous from the Iron Ore of the Sishen Iron Ore Mine, South Africa. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2008. [Google Scholar]
- Ndlovu, B.; Becker, M.; Forbes, E.; Deglon, D.; Franzidis, J.P. The influence of phyllosilicate mineralogy on the rheology of mineral slurries. Miner. Eng. 2011, 24, 1314–1322. [Google Scholar] [CrossRef]
- Bracke, G.; Satir, M.; Krau, P. The cryptand (222) for exchanging cations of micas. Clay Clay Miner. 1995, 43, 732–737. [Google Scholar] [CrossRef]
- Bubnova, T.; Skamnitskaya, L.; Gorbunova, E.; Chertov, A. Contrast characteristics of the muscovitic quartzite from Karelia, Russia—Determining the possibility of intensification of the beneficiation process. IOP Conf. Ser. Earth Environ. Sci. 2017, 95, 042072. [Google Scholar] [CrossRef]
Texture Type | Ore Type | Origin | ||
---|---|---|---|---|
Granular | Arenaceous | Massive | Massive arenaceous phosphorite | Abnormal chemical conditions |
Laminated | Laminated arenaceous phosphorite | |||
Striped/banded | Striped/banded (dolomitic or clayey) arenaceous phosphorite | |||
Detrital | Gravel phosphorite | |||
Oolitic | Brecciated detrital phosphorite | |||
Coagulum | Oolitic phosphorite | |||
Agglomerate | Agglomerated arenaceous phosphorite | |||
Gelatinous | Gel layered phosphorite | Authigene | ||
Nodular phosphorite | ||||
Biogenetic | Stromatolite | Cylindric stromatolite phosphorite | Biological | |
Algae | Algal arenaceous phosphorite | |||
Shell | Bioclastic (containing small shell fossils) arenaceous phosphorite |
Component | Content (wt.%) | Component | Content (wt.%) |
---|---|---|---|
P2O5 | 25.94 | SO3 | 1.56 |
CaO | 38.45 | TiO2 | 0.269 |
MgO | 1.96 | MnO | 0.0825 |
SiO2 | 17.14 | CuO | 0.0215 |
Fe2O3 | 1.283 | ZnO | 0.0395 |
Al2O3 | 6.16 | Rb2O | 0.001 |
Na2O | 0.203 | SrO | 0.083 |
K2O | 1.41 | ZrO2 | 0.0113 |
F | 2.54 | BaO | 0.498 |
Cl | 0.015 |
Mineral | Content (wt.%) | Mineral | Content (wt.%) |
---|---|---|---|
Apatite | 68.42 | Barite | 0.24 |
Orthoclase | 0.29 | Muscovite | 2.51 |
Quartz | 8.41 | Rutile | 0.06 |
Kaolinite | 0.47 | Biotite | 0.42 |
Anorthite | 2.87 | Diopside | 0.04 |
Pyrite | 0.99 | Native iron | 0.02 |
Hornblende | 1.77 | Enargite | 0.02 |
Calcite | 8.32 | Fayalite | 0.07 |
Goethite | 0.28 | BaSiO3 | 0.01 |
Chlorite | 0.02 | (Ca, Fe) silicate | 0.04 |
Augite | 0.05 | Apatite + Pyrite | 0.07 |
Albite | 0.06 | V spinel | 0.01 |
Dolomite | 4.55 | In total | 100.00 |
Mineral | Content (wt.%) | Mineral | Content (wt.%) |
---|---|---|---|
Kaolinite | 1.40 | Dolomite | 16.00 |
Anorthite | 5.56 | Biotite | 2.79 |
Pyrite | 50.12 | Native iron | 1.67 |
Hornblende | 2.55 | Fayalite | 1.44 |
Goethite | 13.89 | (Ca, Fe) silicate | 1.00 |
Mineral | Content (wt.%) | Mineral | Content (wt.%) |
---|---|---|---|
Apatite | 19.65 | Hornblende | 2.67 |
Orthoclase | 1.92 | Calcite | 19.09 |
Quartz | 6.76 | Muscovite | 24.90 |
Kaolinite | 5.23 | Biotite | 3.33 |
Anorthite | 14.77 | Albite | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, J.; Zhang, K.; He, D.; Zhao, H.; Hakkou, R.; Benzaazoua, M. Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China. Minerals 2020, 10, 1038. https://doi.org/10.3390/min10111038
Deng J, Zhang K, He D, Zhao H, Hakkou R, Benzaazoua M. Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China. Minerals. 2020; 10(11):1038. https://doi.org/10.3390/min10111038
Chicago/Turabian StyleDeng, Jie, Kecheng Zhang, Dongsheng He, Hengqin Zhao, Rachid Hakkou, and Mostafa Benzaazoua. 2020. "Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China" Minerals 10, no. 11: 1038. https://doi.org/10.3390/min10111038
APA StyleDeng, J., Zhang, K., He, D., Zhao, H., Hakkou, R., & Benzaazoua, M. (2020). Occurrence of Sesquioxide in a Mid-Low Grade Collophane-Sedimentary Apatite Ore from Guizhou, China. Minerals, 10(11), 1038. https://doi.org/10.3390/min10111038