Genesis of Volcanic Rocks in the Zijinshan Ore District, SE China: Implications for Porphyry-Epithermal Mineralization
Abstract
:1. Introduction
2. Geological Background and Sampling
3. Analytical Methods
3.1. Zircon U–Pb Dating and Trace-Element Analyses
3.2. Whole-Rock Major- and Trace-Element and Sr–Nd Isotope Geochemical Features
3.3. Zircon O Isotope Analyses
3.4. Zircon Lu–Hf Isotope Analyses
4. Analytical Results
4.1. Zircon U–Pb Dating and Trace Elements
4.2. Whole-Rock Major and Trace Elements
4.3. Whole-Rock Sr–Nd Isotopes
4.4. In Situ Zircon Hf–O Isotopes
5. Discussion
5.1. Timing of Volcanism and Relationship to Porphyry-Epithermal Mineralization
5.2. Magma Source of the Volcanic Rocks
5.3. Petrogenesis
5.4. Implications for Porphyry-Epithermal Mineralization
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, J.Z. Geology, exploration model and practice of Zijinshan ore concentrated area. Miner. Depos. 2013, 32, 757–766. (In Chinese) [Google Scholar]
- Liang, Q.L.; Jiang, S.H.; Wang, S.H.; Li, C. Re-Os dating of the molybdenite from the Luobuling porphyry copper-molybdenum deposit and its geological significance in the Zijinshan orefield, Fujian. Acta Geol. Sin. 2012, 86, 1113–1118. (In Chinese) [Google Scholar]
- Wu, L.Y.; Hu, R.Z.; Qi, Y.Q.; Zhu, J.J. Zircon LA-ICP-MS U-Pb ages and geochemical characteristics of quartz syenite porphyry from Jintonghu deposit in Zijinshan ore field, Fujian Province, South China. Acta Pet. Sin. 2013, 29, 4151–4166. (In Chinese) [Google Scholar]
- Li, B.; Jiang, S.Y. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust–mantle interaction and lithospheric extension. J. Asian Earth Sci. 2014, 93, 253–274. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Y.J.; Pirajno, F.; Chen, J.; Li, J.; Qi, J.P.; Li, N. Geology, geochronology, fluid inclusion and H–O isotope geochemistry of the Luoboling Porphyry Cu–Mo deposit, Zijinshan Orefield, Fujian Province, China. Ore Geol. Rev. 2014, 57, 61–77. [Google Scholar] [CrossRef]
- Hua, R.M.; Lu, J.J.; Chen, P.R.; Li, X.F.; Liu, X.D.; Zhang, W.L. The late Mesozic porphyry-epithermal Au-Cusystem in east China and their ore-forming fluieds. Prog. Nat. Sci. 2002, 12, 240–244. (In Chinese) [Google Scholar]
- Zhang, D.Q.; She, H.Q.; Li, D.X.; Feng, C.Y. The porphyry-epithermal metallogenic system in the Zijinshan region, Fujian Province. Acta Geol. Sin. 2003, 77, 253–261. (In Chinese) [Google Scholar]
- Zhang, D.Q.; Feng, C.Y.; Li, D.X.; She, H.Q.; and Dong, Y.J. The Evolution of Ore-forming Fluids in the Porphyry-Epithermal Metallogenic System of Zijinshan Area. Acta Geos. Sin. 2005, 26, 127–136. (In Chinese) [Google Scholar]
- Huang, R.S. Igneous rock series and epithermal-porphyry copper gold and silver mineralization system in Fujian Zijinshan ore field. J. Geomech. 2008, 14, 74–86. (In Chinese) [Google Scholar]
- Zhou, X.M.; Sun, T.; Shen, W.Z.; Shu, L.S.; Niu, Y.L. Petrogenesis of Mesozoic granitoids and volcanic rocks in South China: A response to tectonic evolution. Episodes 2006, 29, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Li, X.Y.; Li, S.Z.; Suo, Y.H.; Dai, L.M.; Guo, L.L.; Ge, F.J.; Lin, P.J. Late Cretaceous basalts and rhyolites from Shimaoshan Group in eastern Fujian Province, SE China: Age, petrogenesis, and tectonic implications. Int. Geol. Rev. 2017, 60, 1721–1743. [Google Scholar] [CrossRef]
- So, C.S.; Zhang, D.Q.; Yun, S.T.; Li, D.X. Alteration-mineralization zoning and fluid inclusions of the high sulfidation epithermal Cu-Au mineralization at Zijinshan, Fujian Province, China. Econ. Geol. 1998, 93, 961–980. [Google Scholar] [CrossRef]
- Zhong, J.; Chen, Y.J.; Chen, J.; Li, J.; Qi, J.P.; Dai, M.C. Fluid inclusion study of the Luoboling porphyry Cu-Mo deposit in the Zijinshan orefield, Fujian Province. Acta Pet. Sin. 2011, 27, 1410–1424. (In Chinese) [Google Scholar]
- Huang, W.T.; Li, J.; Liang, H.Y.; Wang, C.L.; Lin, S.P.; Wang, X.Z. Zircon LA-ICP-MS U-Pb ages and highly oxidized features of magma associated with Luoboling porphyry Cu-Mo deposit in Zijinshan ore field, Fujian Province. Acta Pet. Sin. 2013, 29, 592–593. (In Chinese) [Google Scholar]
- Xue, K. The Mineralization and Alteration Zonation of the Wuziqilong Copper Deposit in the Zijinshan Ore Field, Fujian Province. Geotecton. Metallog. 2013, 37, 463–470. (In Chinese) [Google Scholar]
- Chen, J.; Chen, Y.J.; Zhong, J.; Sun, Y.; Qi, J.P.; Li, J. Geological and ore-fluid characteristics of Longjiangting Cu deposit in Zijinshan Orefield, Fujian Province, and their genetic implications. Miner. Depos. 2015, 34, 98–118. (In Chinese) [Google Scholar]
- Pan, J.Y.; Ni, P.; Chi, Z.; Wang, W.B.; Zeng, W.C.; Xue, K. Alunite 40Ar/39Ar and Zircon U-Pb Constraints on the Magmatic-Hydrothermal History of the Zijinshan High-Sulfidation Epithermal Cu-Au Deposit and the Adjacent Luoboling Porphyry Cu-Mo Deposit, South China: Implications for Their Genetic Association. Econ. Geol. 2019, 114, 667–695. [Google Scholar] [CrossRef]
- Jiang, S.H.; Bagas, L.; Liang, Q.L. New insights into the petrogenesis of volcanic rocks in the Shanghang Basin in the Fujian Province, China. J. Asian Earth Sci. 2015, 105, 48–67. [Google Scholar] [CrossRef]
- Jiang, S.H.; Liang, Q.L.; Bagas, L.; Wang, S.H.; Nie, F.J.; Liu, Y.F. Geodynamic setting of the Zijinshan porphyry–epithermal Cu–Au–Mo–Ag ore system, SW Fujian Province, China: Constrains from the geochronology and geochemistry of the igneous rocks. Ore Geol. Rev. 2013, 53, 287–305. [Google Scholar] [CrossRef]
- Zhao, J.H.; Hu, R.Z.; Zhou, M.F.; Liu, S. Elemental and Sr–Nd–Pb isotopic geochemistry of Mesozoic mafic intrusions in southern Fujian Province, SE China: Implications for lithospheric mantle evolution. Geol. Mag. 2007, 144, 937–952. [Google Scholar] [CrossRef] [Green Version]
- Xiao, A.F.; Li, D.P.; Liu, X.M. LA-ICP-MS Zircon U-Pb Dating for the Volcanic Rocks of the Lower Formation of the Shimaoshan Group and Evolution of the Cretaceous Magmatism in the Zijinshan Cu-Au Orefield, Fujian Province. Geotecton. Metallog. 2012, 36, 613–623. (In Chinese) [Google Scholar]
- Zhao, G.C.; Cawood, P.A. Precambrian geology of China. Precambrian Res. 2012, 222–223, 13–54. [Google Scholar] [CrossRef]
- Zhang, S.B.; Zheng, Y.F. Formation and evolution of Precambrian continental lithosphere in South China. Gondwana Res. 2013, 23, 1241–1260. [Google Scholar] [CrossRef]
- Chen, J.F.; Jahn, B.M. Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics 1998, 284, 101–133. [Google Scholar] [CrossRef]
- Xu, X.S.; O’Reilly, S.Y.; Griffin, W.L.; Wang, X.; Pearson, N.J.; He, Z.Y. The crust of Cathaysia: Age, assembly and reworking of two terranes. Precambrian Res. 2007, 158, 51–78. [Google Scholar] [CrossRef]
- Zhou, J.C.; Jiang, S.Y.; Wang, X.L.; Yang, J.H.; Zhang, M.Q. Study on lithogeochemistry of Middle Jurassic basalts from southern China represented by the Fankeng basalts from Yongding of Fujian Province. Sci. China Ser. D Earth Sci. 2006, 49, 1020–1031. [Google Scholar] [CrossRef]
- Liu, L.; Qiu, J.S.; Zhao, J.L.; Yang, Z.L. Geochronological, geochemical, and Sr–Nd–Hf isotopic characteristics of Cretaceous monzonitic plutons in western Zhejiang Province, Southeast China: New insights into the petrogenesis of intermediate rocks. Lithos 2014, 196–197, 242–260. [Google Scholar] [CrossRef]
- Zhou, X.M.; Li, W.X. Origin of Late Mesozoic igneous rocks in Southeastern China: Implications for lithosphere subduction and underplating of mafic magmas. Tectonophysics 2000, 326, 269–287. [Google Scholar] [CrossRef]
- Chen, C.H.; Lee, C.Y.; Lu, H.Y.; Hsieh, P.S. Generation of Late Cretaceous silicic rocks in SE China: Age, major element and numerical simulation constraints. J. Asian Earth Sci. 2008, 31, 479–498. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Gao, P.; Zheng, Y.F. The source of Mesozoic granitoids in South China: Integrated geochemical constraints from the Taoshan batholith in the Nanling Range. Chem. Geol. 2015, 395, 11–26. [Google Scholar] [CrossRef]
- Li, L.M.; Sun, M.; Xing, G.F.; Zhao, G.C.; Zhou, M.F.; Wong, J.; Chen, R. Two late Mesozoic volcanic events in Fujian Province: Constraints on the tectonic evolution of southeastern China. Int. Geol. Rev. 2009, 51, 216–251. [Google Scholar] [CrossRef]
- Li, B.; Jiang, S.Y. A subduction-related metasomatically enriched mantle origin for the Luoboling and Zhongliao Cretaceous granitoids from South China: Implications for magma evolution and Cu–Mo mineralization. Int. Geol. Rev. 2015, 57, 1239–1266. [Google Scholar] [CrossRef]
- Zhao, J.H.; Hu, R.Z.; Liu, S. Geochemistry, Petrogenesis, and Tectonic Significance of Mesozoic Mafic Dikes, Fujian Province, Southeastern China. Int. Geol. Rev. 2010, 46, 542–557. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, J.H.; Wang, Q.; Su, B.; Zhou, M.F.; Xu, H.; Cui, X. Ages and geochemistry of granites in the Pingtan–Dongshan Metamorphic Belt, Coastal South China: New constraints on Late Mesozoic magmatic evolution. Lithos 2012, 150, 268–286. [Google Scholar] [CrossRef]
- Huang, W.T. Study on Magmatism and Deposit Formation in the Zijinshan-Luoboling Mine Area, Fujian Province. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2014. [Google Scholar]
- Guo, F.; Fan, W.M.; Li, C.W.; Zhao, L.; Li, H.X.; Yang, J.H. Multi-stage crust–mantle interaction in SE China: Temporal, thermal and compositional constraints from the Mesozoic felsic volcanic rocks in eastern Guangdong–Fujian provinces. Lithos 2012, 150, 62–84. [Google Scholar] [CrossRef]
- Zheng, K.L. New reseaching development of late Mesozoic volcano formation in Fujian Province. Geol. Fujian 2012, 31, 335. (In Chinese) [Google Scholar]
- Zhang, D.Q.; She, H.Q.; Yan, S.H.; Xu, W.Y. Geochemistry of Mesozoic magmatities in the Zijinshan Region and implication on regional tectonic inversion. Geol. Rev. 2001, 47, 608–615. (In Chinese) [Google Scholar]
- Liang, Q.L.; Jiang, S.H.; Wang, S.H.; Chen, C.L.; Liu, Y.F.; Bai, D.M. Petrogenesis of the Mesozoic magmatic rocks in Zijinshan area: Constraints from zircon Hf isotope evidence. Acta Petrol. Mineral. 2013, 32, 318–328. (In Chinese) [Google Scholar]
- Geological and Environmental Reference Materials. Available online: http://georem.mpch-mainz.gwdg.de/ (accessed on 20 November 2019).
- Liu, Y.S.; Hu, Z.C.; Zong, K.Q.; Gao, C.G.; Gao, S.; Xu, J.; Chen, H.H. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS. Chin. Sci. Bull. 2010, 55, 1535–1546. [Google Scholar] [CrossRef]
- Ludwig, K.R. Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel; Berkeley Geochronology Center: Berkeley, CA, USA, 2003; p. 70. [Google Scholar]
- Qi, L.; Hu, J.; Gregoire, D.C. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta 2000, 51, 507–513. [Google Scholar]
- Richard, P.; Shimizu, N.; Allegre, C. 143Nd/146Nd, a natural tracer: An application to oceanic basalts. Earth Planet. Sci. Lett. 1976, 31, 269–278. [Google Scholar] [CrossRef]
- Pu, W.; Zhao, K.D.; Ling, H.F.; Jiang, S.Y. High precision Nd isotope measurement by Triton TI Mass Spectrometry. Acta Geosci. Sin. 2004, 25, 271–274. (In Chinese) [Google Scholar]
- Li, X.H.; Li, W.X.; Li, Q.L.; Wang, X.C.; Liu, Y.; Yang, Y.H. Petrogenesis and tectonic significance of the ∼850 Ma Gangbian alkaline complex in South China: Evidence from in situ zircon U–Pb dating, Hf–O isotopes and whole-rock geochemistry. Lithos 2010, 114, 1–15. [Google Scholar] [CrossRef]
- Wiedenbeck, M.; Hanchar, J.M.; Peck, W.H.; Sylvester, P.; Valley, J.; Whitehouse, M.; Kronz, A.; Morishita, Y.; Nasdala, L.; Fiebig, J.; et al. Further Characterisation of the 91500 Zircon Crystal. Geostand. Geoanal. Res. 2004, 28, 9–39. [Google Scholar] [CrossRef]
- Patchett, P.J.; Tatsumoto, M. A Routine High-Precision Method for Lu-Hf Isotope Geochemistry and Chronology. Contrib. Miner. Pet. 1980, 75, 263–267. [Google Scholar] [CrossRef]
- Machado, N.; Simonetti, A. U-Pb dating and Hf isotopic composition of zircon by Laser Ablation-MC-ICP-MS. Laser-Ablation-Icpms Earth Sci. Princ. Appl. Can. 2001, 29, 121–146. [Google Scholar]
- Vervoort, J.D.; Patchett, P.J.; Söderlund, U.; Baker, M. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem. Geophys. Geosyst. 2004, 5, 1–15. [Google Scholar] [CrossRef]
- Chi, Z.; Ni, P.; Liao, J.F.; Fan, M.S.; Liu, Z.; Zhang, X. The comparative study of the geochemistry of Wenwu porphyry and Luoboling porphyry in Zijinshan ore-field, Fujian province. J. Nanjing Univ. 2018, 54, 398–412. (In Chinese) [Google Scholar]
- Jacques, G.; Hoernle, K.; Gill, J.; Hauff, F.; Wehrmann, H.; Garbe-Schönberg, D.; van den Bogaard, P.; Bindeman, I.; Lara, L.E. Across-arc geochemical variations in the Southern Volcanic Zone, Chile (34.5–38.0° S): Constraints on mantle wedge and slab input compositions. Geochim. Cosmochim. Acta 2013, 123, 218–243. [Google Scholar] [CrossRef] [Green Version]
- Rapp, R.P.; Shimizu, N.; Norman, M.D.; Applegate, G.S. Reaction between slab-derived melts and peridotite inthe mantle wedge: Experimental constraints at 3.8 GPa. Chem. Geol. 1999, 160, 335–356. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. Geol. Soc. Lond. Spec. Publ. 1989, 42, 313–345. [Google Scholar] [CrossRef]
- Chen, J.Y.; Yang, J.H.; Zhang, J.H.; Sun, J.F.; Wilde, S.A. Petrogenesis of the Cretaceous Zhangzhou batholith in southeastern China: Zircon U–Pb age and Sr–Nd–Hf–O isotopic evidence. Lithos 2013, 162–163, 140–156. [Google Scholar] [CrossRef]
- Zindler, A.; Hart, S.R. Chemical geodynamics. Rev. Earth Planet. Sci. 1986, 14, 493–571. [Google Scholar] [CrossRef]
- Shen, W.Z.; Wang, D.Z.; Liu, C.S. Isotope geochemical characteristics and material sources of tin-bearing porphyries in South China. Acta Geol. Sin. 1996, 9, 181–192. [Google Scholar]
- He, Z.Y.; Xu, X.S. Petrogenesis of the Late Yanshanian mantle-derived intrusions in southeastern China: Response to the geodynamics of paleo-Pacific plate subduction. Chem. Geol. 2012, 328, 208–221. [Google Scholar] [CrossRef]
- Yu, J.S.; Gui, X.T.; Yuan, C. The characteristics of isotopes geochemistry of darongshan granitoid suite, Guangxi. Geology 1999, 12, 1–6. (In Chinese) [Google Scholar]
- Qi, C.S.; Deng, X.G.; Li, W.X.; Li, X.H.; Yang, Y.H.; Xie, L.W. Origin of the Darongshan-Shiwandashan S-type granitoid belt from southeastern Guangxi: Geochemical and Sr-Nd-Hf isotopic constraints. Acta Pet. Sin. 2007, 23, 403–412. [Google Scholar]
- Ayers, J. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones. Contrib. Min. Pet. 1998, 132, 390–404. [Google Scholar] [CrossRef]
- Plank, T.; Langmuir, C.H. The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 1998, 145, 325–394. [Google Scholar] [CrossRef]
- Jahn, B.M.; Wu, F.Y.; Lo, C.H.; Tsai, C.H. Crust–mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr–Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem. Geol. 1999, 157, 119–146. [Google Scholar] [CrossRef]
- Hofmann, A.W.; Jochum, K.P.; Seufert, M.; White, W.M. Nb and Pb in oceanic basalts: New constraints on mantle evolution. Earth Planet. Sci. Lett. 1986, 79, 33–45. [Google Scholar] [CrossRef]
- Keppler, H. Constraints from partitioning experiments on the composition of subduction-zone fluids. Nature 1996, 380, 237–240. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–51. [Google Scholar]
- Jiang, S.H.; Bagas, L.; Liang, Q.L. Pyrite Re-Os isotope systematics at the Zijinshan deposit of SW Fujian, China: Constraints on the timing and source of Cu-Au mineralization. Ore Geol. Rev. 2017, 80, 612–622. [Google Scholar] [CrossRef]
- Hu, G.R.; Zhang, B.D. Neodymium isotope compositions and source materials of the meta-basement in Central Jiangxi Province. Acta Petrol. Mineral. 1998, 17, 35–40. (In Chinese) [Google Scholar]
- Rapp, R.P.; Watson, E.B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. J. Pet. 1995, 36, 891–931. [Google Scholar] [CrossRef]
- Rutter, M.J.; Wyllie, P.J. Melting of vapour-absent tonalite at 10 kbar to simulate dehydration-melting in the deep crust. Nature 1988, 331, 159–160. [Google Scholar] [CrossRef]
- Green, T.H. Significance of Nb/Ta as an indicator of geochemical processes in the crust-mantle system. Chem. Geol. 1995, 120, 347–359. [Google Scholar] [CrossRef]
- Mcdonough, W.F.; Sun, S.S. The composition of the earth. Chem. Geol. 1995, 120, 223–253. [Google Scholar] [CrossRef]
- Li, Z.; Qiu, J.S.; Yang, X.M. A review of the geochronology and geochemistry of Late Yanshanian (Cretaceous) plutons along the Fujian coastal area of southeastern China: Implications for magma evolution related to slab break-off and rollback in the Cretaceous. Earth-Sci. Rev. 2014, 128, 232–248. [Google Scholar] [CrossRef]
- Kemp, A.I.S.; Hawkesworth, C.J.; Foster, G.L.; Paterson, B.A.; Woodhead, J.D.; Hergt, J.M.; Gray, C.M.; Whitehouse, M.J. Magmatic and crustal differentiation history of granitic rocks from hafnium and oxygen isotopes in zircon. Science 2007, 315, 980–983. [Google Scholar] [CrossRef]
- Valley, J.W.; Lackey, J.S.; Cavosie, A.J.; Clechenko, C.C.; Spicuzza, M.J.; Basei, M.A.S.; Bindeman, I.N.; Ferreira, V.P.; Sial, A.N.; King, E.M.; et al. 4.4 billion years of crustal maturation: Oxygen isotope ratios of magmatic zircon. Contrib. Miner. Pet. 2005, 150, 561–580. [Google Scholar] [CrossRef]
- Meng, L.; Li, Z.X.; Chen, H.L.; Li, X.H.; Wang, X.C. Geochronological and geochemical results from Mesozoic basalts in southern South China Block support the flat-slab subduction model. Lithos 2012, 132–133, 127–140. [Google Scholar] [CrossRef]
- Pearce, J.A.; Peate, D.W. Tectonic implications of the compositions of volcanic arc magmas. Annu. Rev. Earth Planet. Sci. 1995, 23, 251–285. [Google Scholar] [CrossRef]
- Li, P.J.; Yu, X.Q.; Li, H.Y.; Qiu, J.T.; Zhou, X. Jurassic–Cretaceous tectonic evolution of Southeast China: Geochronological and geochemical constraints of Yanshanian granitoids. Int. Geol. Rev. 2013, 55, 1202–1219. [Google Scholar] [CrossRef]
- Hofmann, A.W. Mantle geochemistry: The message from oceanic volcanism. Nature 1997, 385, 219–229. [Google Scholar] [CrossRef]
- Sun, W.D.; Hu, Y.H.; Kamenetsky, V.S.; Eggins, S.M.; Chen, M.; Arculus, R.J. Constancy of Nb/U in the mantle revisited. Geochim. Cosmochim. Acta 2008, 72, 3542–3549. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H. Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic South China: A flat-slab subduction model. Geology 2007, 35, 179–182. [Google Scholar] [CrossRef]
- Kelemen, P.B.; Hanghoj, K.; Greene, A.R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise Geochem. 2007, 138, 1–70. [Google Scholar]
- Conticelli, S.; Guarnieri, L.; Farinelli, A.; Mattei, M.; Avanzinelli, R.; Bianchini, G.; Boari, E.; Tommasini, S.; Tiepolo, M.; Prelevic, D. Trace elements and Sr-Nd-Pb isotopes of K-rich, shoshonitic, and calc-alkaline magmatism of the Western Mediterranean region: Genesis of ultrapotassic to calc-alkaline magmatic associations in a post-collisional geodynamic setting. Lithos 1999, 107, 68–92. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, F.E.; Arima, M.; Edgar, A.D. Partial melting of a phlogopite-clinopyroxenite nodule from south-west Uganda: An experimental study bearing on the origin of highly potassic continental rift volcanics. Contrib. Miner. Pet. 1985, 91, 321–329. [Google Scholar] [CrossRef]
- Baker, M.B.; Hirschmann, M.M.; Ghiorsot, M.S.; Stolper, E.M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 1995, 375, 308–311. [Google Scholar] [CrossRef]
- Schmidt, M.W.; Jagoutz, O. The global systematics of primitive arc melts. Geochem. Geophys. Geosyst. 2017, 18, 2817–2854. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, L.L.; Bi, X.W.; Hu, R.Z.; Chen, X.L.; Ma, R.; Zhu, J.J.; Yu, H.J.; Liu, B.H.; Li, J. Petrogenesis and metallogenic implications of volcanic rocks from the Lawu basin, eastern Tibet: Insights into the intracontinental Eocene-Oligocene porphyry copper systems. Ore Geol. Rev. 2019, 111, 1–27. [Google Scholar] [CrossRef]
- Gudnason, J.; Holm, P.M.; Søager, N.; Llambías, E.J. Geochronology of the late Pliocene to recent volcanic activity in the Payenia back-arc volcanic province, Mendoza Argentina. J. S. Am. Earth Sci. 2012, 37, 191–201. [Google Scholar] [CrossRef]
- Ballard, J.R.; Palin, M.J.; Campbell, I.H. Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: Application to porphyry copper deposits of northern Chile. Contrib. Miner. Pet. 2002, 144, 347–364. [Google Scholar] [CrossRef]
- Richards, J.P. Tectono-Magmatic Precursors for Porphyry Cu-(Mo-Au) Deposit Formation. Econ. Geol. 2003, 98, 1515–1533. [Google Scholar] [CrossRef]
- Loucks, R.R. Distinctive composition of copper-ore-forming arc magmas. Aust. J. Earth Sci. 2014, 61, 5–16. [Google Scholar] [CrossRef]
- De Hoog, J.C.M.; Hattori, K.H.; Hoblitt, R.P. Oxidized sulfur-rich mafic magma at Mount Pinatubo, Philippines. Contrib. Miner. Pet. 2003, 146, 750–761. [Google Scholar] [CrossRef]
- John, H.D.; Adam, J.R.K.; Joseph, L.W.; Richard, M.T.; Alison, K.; Robert, G.L.; Lucian, P.F. Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas. Econ. Geol. 2015, 110, 241–251. [Google Scholar]
- Lu, Y.J.; Loucks, R.R.; Fiorentini, M.L.; Mccuaig, T.C.; Evans, N.J.; Yang, Z.M.; Hou, Z.Q. Zircon Compositions as a pathfinder for Porphyry Cu± Mo± Au Deposits. Soc. Econ. Geol. Spec. Publ. Ser. 2016, 19, 329–347. [Google Scholar]
- Li, X.Y.; Gao, Q.Z.; Song, H.; Zhang, J.R.; Lai, C.K. Discriminating ore fertile and barren granites using zircon Ce and Eu anomalies—Perspective from late Mesozoic (Yanshanian) granites in South China. Ore Geol. Rev. 2019, 113, 1644. [Google Scholar] [CrossRef]
- Zhu, J.J.; Richards, J.P.; Rees, C.; Creaser, R.; DuFrane, S.A.; Locock, A.; Petrus, J.A.; Lang, J. Elevated Magmatic Sulfur and Chlorine Contents in Ore-Forming Magmas at the Red Chris Porphyry Cu-Au Deposit, Northern British Columbia, Canada. Econ. Geol. 2018, 113, 1047–1075. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Richards, J.P.; Hou, Z.Q.; Yang, Z.M.; Gou, Z.B.; Dufrane, S.A. Increasing magmatic oxidation state from Paleocene to Miocene in the eastern Gangdese belt, Tibet: Implication for collision-related porphyry Cu-Mo±Au mineralization. Econ. Geol. 2014, 109, 1943–1965. [Google Scholar] [CrossRef]
- Toplis, M.J.; Carroll, M.R. An Experimental Study of the Influence of Oxygen Fugacity on Fe-Ti Oxide Stability, Phase Relations, and Mineral--Melt Equilibria in Ferro-Basaltic Systems. J. Pet. 1995, 36, 1137–1170. [Google Scholar] [CrossRef]
- Park, J.W.; Campbell, I.H.; Arculus, R.J. Platinum-alloy and sulfur saturation in an arc-related basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus Basin. Geochim. Cosmochim. Acta 2013, 101, 76–95. [Google Scholar] [CrossRef]
- Park, J.W.; Campbell, I.H.; Kim, J.; Moon, J.W. The Role of Late Sulfide Saturation in the Formation of a Cu- and Au-rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi–Motutahi Lavas, Tonga Rear Arc. J. Pet. 2015, 56, 59–81. [Google Scholar] [CrossRef] [Green Version]
- Jenner, F.E.; Hauri, E.H.; Bullock, E.S.; König, S.; Arculus, R.J.; Mavrogenes, J.A.; Mikkelson, N.; Goddard, C. The competing effects of sulfide saturation versus degassing on the behavior of the chalcophile elements during the differentiation of hydrous melts. Geochem. Geophys. Geosyst. 2015, 16, 1490–1507. [Google Scholar] [CrossRef] [Green Version]
- Hao, H.D.; Campbell, I.H.; Park, J.W.; Cooke, D.R. Platinum-group element geochemistry used to determine Cu and Au fertility in the Northparkes igneous suites, New South Wales, Australia. Geochim. Cosmochim. Acta 2017, 216, 372–392. [Google Scholar] [CrossRef]
- Richards, J.P. Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 2011, 40, 1–26. [Google Scholar] [CrossRef]
- Richards, J.P.; Kerrich, R. Adakite-like rocks; their diverse origins and questionable role in metallogenesis. Econ. Geol. 2007, 102, 537–576. [Google Scholar] [CrossRef]
- Richards, J.P. High Sr/Y arc magmas and porphyry Cu ± Mo ± Au deposits: Just add water. Econ. Geol. 2011, 106, 1075–1081. [Google Scholar] [CrossRef]
- Sun, W.D.; Huang, R.F.; Li, H.; Hu, Y.B.; Zhang, C.C.; Sun, S.J.; Zhang, L.P.; Ding, X.; Li, C.Y.; Zartman, R.E.; et al. Porphyry deposits and oxidized magmas. Ore Geol. Rev. 2015, 65, 97–131. [Google Scholar] [CrossRef]
- Hou, Z.Q.; Yang, Z.M.; Lu, Y.J.; Kemp, A.; Zheng, Y.C.; Li, Q.Y.; Tang, J.X.; Yang, Z.S.; Duan, L.F. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology 2015, 43, 247–250. [Google Scholar] [CrossRef]
- Richards, J.P. The oxidation state, and sulfur and Cu contents of arc magmas: Implications for metallogeny. Lithos 2015, 233, 27–45. [Google Scholar] [CrossRef]
- Sun, W.D.; Liang, H.Y.; Ling, M.X.; Zhan, M.Z.; Ding, X.; Zhang, H.; Yang, X.Y.; Li, Y.L.; Ireland, T.R.; Wei, Q.R.; et al. The link between reduced porphyry copper deposits and oxidized magmas. Geochim. Cosmochim. Acta 2013, 103, 263–275. [Google Scholar] [CrossRef]
- Jugo, P.J. Sulfur content at sulfide saturation in oxidized magmas. Geology 2009, 37, 415–418. [Google Scholar] [CrossRef]
- Sun, W.D.; Bennett, V.C.; Kamenetsky, V.S. The mechanism of Re enrichment in arc magmas: Evidence from Lau Basin basaltic glasses and primitive melt inclusions. Earth Planet. Sci. Lett. 2004, 222, 101–114. [Google Scholar] [CrossRef]
- Richard, J.P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 2009, 37, 247–250. [Google Scholar] [CrossRef]
- Mengason, M.J.; Candela, P.A.; Piccolip, M. Molybdenum, tungsten and magganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt: Impact of sulfide segregation on arc magma evolution. Geochim. Cosmochim. Acta 2011, 75, 7018–7030. [Google Scholar] [CrossRef]
Rock Type | Rhyolite | Trachyte | Trachyandesite | Trachyandesite | Trachyte |
---|---|---|---|---|---|
t(Ma) | 105 | 105 | 105 | 105 | 105 |
Rb(×10−6) | 207 | 481 | 183 | 282 | 204 |
Sr(×10−6) | 154 | 235 | 454 | 286 | 297 |
87Sr/86Sr | 0.715401 | 0.720456 | 0.710641 | 0.714979 | 0.712307 |
87Rb/86Sr | 3.891373 | 5.928503 | 1.166397 | 2.854424 | 1.987905 |
(87Sr/86Sr)i | 0.709595 | 0.711610 | 0.708901 | 0.710721 | 0.709341 |
Sm(×10−6) | 4.31 | 4.25 | 5.24 | 5.47 | 4.1 |
Nd(×10−6) | 23.4 | 22.5 | 27.6 | 29.3 | 23.9 |
143Nd/144Nd | 0.512356 | 0.512373 | 0.512312 | 0.512356 | 0.512404 |
147Sm/144Nd | 0.11128 | 0.11412 | 0.11470 | 0.11279 | 0.10364 |
εNd(t) | −6.9 | −4.1 | −5.3 | −4.4 | −3.3 |
TDM2(Ga) | 1.47 | 1.24 | 1.33 | 1.26 | 1.19 |
Spots | t(Ma) | 176Lu/177Hf | 2σ | 176Hf/177Hf | 2σ | εHf(t) | 2σ | TDM2(Ga) | fLu/Hf | δ18O(‰) | 2σ |
---|---|---|---|---|---|---|---|---|---|---|---|
ZK5710-30 | |||||||||||
01 | 105.2 | 0.001209 | 0.000009 | 0.282701 | 0.000013 | −0.30 | 0.46 | 1.18 | −0.96 | 6.64 | 0.19 |
02 | 105.4 | 0.001487 | 0.000031 | 0.282672 | 0.000011 | −1.32 | 0.39 | 1.25 | −0.96 | 6.79 | 0.15 |
03 | 105.0 | 0.000700 | 0.000004 | 0.282680 | 0.000013 | −1.02 | 0.46 | 1.23 | −0.98 | 6.25 | 0.17 |
05 | 104.5 | 0.001004 | 0.000004 | 0.282661 | 0.000012 | −1.72 | 0.42 | 1.27 | −0.97 | 6.47 | 0.16 |
06 | 105.0 | 0.000937 | 0.000003 | 0.282680 | 0.000013 | −1.02 | 0.46 | 1.23 | −0.97 | 6.37 | 0.14 |
07 | 104.9 | 0.000942 | 0.000007 | 0.282662 | 0.000012 | −1.64 | 0.42 | 1.27 | −0.97 | 6.65 | 0.20 |
08 | 105.2 | 0.000962 | 0.000008 | 0.282692 | 0.000013 | −0.58 | 0.46 | 1.20 | −0.97 | 6.26 | 0.18 |
09 | 105.5 | 0.004121 | 0.000110 | 0.282629 | 0.000011 | −3.02 | 0.39 | 1.35 | −0.88 | 6.23 | 0.18 |
10 | 105.1 | 0.000960 | 0.000008 | 0.282673 | 0.000013 | −1.28 | 0.46 | 1.24 | −0.97 | 6.66 | 0.23 |
11 | 105.0 | 0.000842 | 0.000006 | 0.282628 | 0.000013 | −2.84 | 0.46 | 1.34 | −0.97 | 6.43 | 0.20 |
12 | 105.1 | 0.000772 | 0.000006 | 0.282657 | 0.000014 | −1.80 | 0.50 | 1.28 | −0.98 | 6.44 | 0.19 |
13 | 105.0 | 0.001154 | 0.000008 | 0.282671 | 0.000013 | −1.35 | 0.46 | 1.25 | −0.97 | 6.11 | 0.17 |
14 | 105.3 | 0.001121 | 0.000006 | 0.282673 | 0.000013 | −1.28 | 0.46 | 1.24 | −0.97 | 6.17 | 0.20 |
15 | 105.1 | 0.001119 | 0.000009 | 0.282619 | 0.000012 | −3.18 | 0.42 | 1.36 | −0.97 | 6.07 | 0.16 |
16 | 105.1 | 0.000795 | 0.000007 | 0.282664 | 0.000013 | −1.58 | 0.46 | 1.26 | −0.98 | ||
17 | 104.5 | 0.002609 | 0.000048 | 0.282680 | 0.000010 | −1.13 | 0.35 | 1.23 | −0.92 | ||
18 | 105.3 | 0.001138 | 0.000006 | 0.282634 | 0.000013 | −2.64 | 0.46 | 1.33 | −0.97 | ||
19 | 105.2 | 0.000784 | 0.000006 | 0.282660 | 0.000012 | −1.70 | 0.42 | 1.27 | −0.98 | ||
20 | 105.4 | 0.000817 | 0.000005 | 0.282682 | 0.000012 | −0.93 | 0.42 | 1.22 | −0.98 | ||
21 | 105.0 | 0.001096 | 0.000008 | 0.282597 | 0.000012 | −3.95 | 0.42 | 1.41 | −0.97 | ||
22 | 105.0 | 0.001515 | 0.000026 | 0.282656 | 0.000012 | −1.92 | 0.42 | 1.28 | −0.97 | ||
24 | 105.1 | 0.001274 | 0.000009 | 0.282694 | 0.000012 | −0.54 | 0.42 | 1.20 | −0.96 | ||
25 | 105.0 | 0.000669 | 0.000002 | 0.282656 | 0.000013 | −1.83 | 0.46 | 1.28 | −0.98 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Z.-Z.; Bai, Z.-J.; Zhong, H.; Zhu, W.-G.; Zheng, S.-J. Genesis of Volcanic Rocks in the Zijinshan Ore District, SE China: Implications for Porphyry-Epithermal Mineralization. Minerals 2020, 10, 200. https://doi.org/10.3390/min10020200
Feng Z-Z, Bai Z-J, Zhong H, Zhu W-G, Zheng S-J. Genesis of Volcanic Rocks in the Zijinshan Ore District, SE China: Implications for Porphyry-Epithermal Mineralization. Minerals. 2020; 10(2):200. https://doi.org/10.3390/min10020200
Chicago/Turabian StyleFeng, Zheng-Zheng, Zhong-Jie Bai, Hong Zhong, Wei-Guang Zhu, and Shi-Ji Zheng. 2020. "Genesis of Volcanic Rocks in the Zijinshan Ore District, SE China: Implications for Porphyry-Epithermal Mineralization" Minerals 10, no. 2: 200. https://doi.org/10.3390/min10020200
APA StyleFeng, Z. -Z., Bai, Z. -J., Zhong, H., Zhu, W. -G., & Zheng, S. -J. (2020). Genesis of Volcanic Rocks in the Zijinshan Ore District, SE China: Implications for Porphyry-Epithermal Mineralization. Minerals, 10(2), 200. https://doi.org/10.3390/min10020200