Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China
Abstract
:1. Introduction
2. Wuda Coalfield and the Xilaifeng and Damo Power Plants
3. Sampling and Analytical Methods
4. Results and Discussion
4.1. Proximate Analysis and Total Sulfur Content of Feed Coals
4.2. Mineralogical Features of Feed Coals
4.3. Major and Trace Elements in the Feed Coals
4.4. Mineralogical Features of CCPs
4.5. Major and Trace Elements in the CCPs
4.5.1. Major Element Compositions of the CCPs
4.5.2. Distribution of Trace Elements in the CCPs
4.5.3. Comparison of Trace Elements in the CCPs and Coal HTAs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Market Report Series: Coal 2019—Analysis and Forecast to 2024; International Energy Agency: Paris, France, 2019. [Google Scholar]
- Jankowski, J.; Ward, C.R.; French, D.; Groves, S. Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 2006, 85, 243–256. [Google Scholar] [CrossRef]
- Jones, K.B.; Ruppert, L.F.; Swanson, S.M. Leaching of elements from bottom ash, economizer fly ash, and fly ash from two coal-fired power plants. Int. J. Coal Geol. 2012, 94, 337–348. [Google Scholar] [CrossRef]
- Koralegedara, N.H.; Al-Abed, S.R.; Arambewela, M.K.J.; Dionysiou, D.D. Impact of leaching conditions on constituents release from Flue Gas Desulfurization Gypsum (FGDG) and FGDG-soil mixture. J. Hazard. Mater. 2017, 324, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Monroy Sarmiento, L.; Roessler, J.G.; Townsend, T.G. Trace element mobility from coal combustion residuals exposed to landfill leachate. J. Hazard. Mater. 2019, 365, 962–970. [Google Scholar] [CrossRef]
- Querol, X.; Umaña, J.C.; Alastuey, A.; Ayora, C.; Lopez-Soler, A.; Plana, F. Extraction of soluble major and trace elements from fly ash in open and closed leaching systems. Fuel 2001, 80, 801–813. [Google Scholar] [CrossRef]
- Ward, C.R.; French, D.; Jankowski, J.; Dubikova, M.; Li, Z.; Riley, K.W. Element mobility from fresh and long-stored acidic fly ashes associated with an Australian power station. Int. J. Coal Geol. 2009, 80, 224–236. [Google Scholar] [CrossRef]
- Zhang, S.; Dai, S.; Finkelman, R.B.; Graham, I.T.; French, D.; Hower, J.C.; Li, X. Leaching characteristics of alkaline coal combustion by-products: A case study from a coal-fired power plant, Hebei Province, China. Fuel 2019, 255, 115710. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Finkelman, R.B.; French, D.; Graham, I.T.; Yang, Y.; Li, J.; Yang, P. Leaching behavior of trace elements from fly ashes of five Chinese coal power plants. Int. J. Coal Geol. 2020, 219, 103381. [Google Scholar] [CrossRef]
- Dai, S.; Zhou, Y.; Zhang, M.; Wang, X.; Wang, J.; Song, X.; Jiang, Y.; Luo, Y.; Song, Z.; Yang, Z.; et al. A new type of Nb(Ta)-Zr(Hf)-REE-Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Taggart, R.K.; Hower, J.C.; Dwyer, G.S.; Hsu-Kim, H. Trends in the rare earth element content of U.S.—Based coal combustion fly ashes. Environ. Sci. Technol. 2016, 50, 5919–5926. [Google Scholar] [CrossRef]
- Kolker, A.; Scott, C.; Hower, J.C.; Vazquez, J.A.; Lopano, C.L.; Dai, S. Distribution of rare earth elements in coal combustion fly ash, determined by SHRIMP-RG ion microprobe. Int. J. Coal Geol. 2017, 184, 1–10. [Google Scholar] [CrossRef]
- Lin, R.; Howard, B.H.; Roth, E.A.; Bank, T.L.; Granite, E.J.; Soong, Y. Enrichment of rare earth elements from coal and coal by-products by physical separations. Fuel 2017, 200, 506–520. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Dai, S.; Zou, J.; French, D.; Graham, I.T. Rare earth elements and yttrium in coal ash from the Luzhou power plant in Sichuan, Southwest China: Concentration, characterization and optimized extraction. Int. J. Coal Geol. 2019, 203, 1–14. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Seredin, V.V.; Dai, S.; Sun, Y.; Chekryzhov, I.Y. Coal deposits as promising sources of rare metals for alternative power and energy-efficient technologies. Appl. Geochem. 2013, 31, 1–11. [Google Scholar] [CrossRef]
- Dai, S.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Dai, S.; Yan, X.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.; Zhao, L.; Ren, D.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.-L.; Li, S.; Jiang, Y. Mineralogy and geochemistry of the No. 6 Coal (Pennsylvanian) in the Junger Coalfield, Ordos Basin, China. Int. J. Coal Geol. 2006, 66, 253–270. [Google Scholar] [CrossRef]
- Dai, S.; Li, D.; Chou, C.-L.; Zhao, L.; Zhang, Y.; Ren, D.; Ma, Y.; Sun, Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2008, 74, 185–202. [Google Scholar] [CrossRef]
- Dai, S.; Jiang, Y.; Ward, C.R.; Gu, L.; Seredin, V.V.; Liu, H.; Zhou, D.; Wang, X.; Sun, Y.; Zou, J.; et al. Mineralogical and geochemical compositions of the coal in the Guanbanwusu Mine, Inner Mongolia, China: Further evidence for the existence of an Al (Ga and REE) ore deposit in the Jungar Coalfield. Int. J. Coal Geol. 2012, 98, 10–40. [Google Scholar] [CrossRef]
- Dai, S.; Li, T.; Jiang, Y.; Ward, C.R.; Hower, J.C.; Sun, J.; Liu, J.; Song, H.; Wei, J.; Li, Q.; et al. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Hailiushu Mine, Daqingshan Coalfield, Inner Mongolia, China: Implications of sediment-source region and acid hydrothermal solutions. Int. J. Coal Geol. 2015, 137, 92–110. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.R.; French, D.; Graham, I.T.; Dai, S.; Yang, C.; Xie, P.; Zhang, S. Origin of a kaolinite-NH4-illite-pyrophyllite-chlorite assemblage in a marine-influenced anthracite and associated strata from the Jincheng Coalfield, Qinshui Basin, Northern China. Int. J. Coal Geol. 2018, 185, 61–78. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D.; Sun, J. Enrichment of critical elements (Nb-Ta-Zr-Hf-REE) within coal and host rocks from the Datanhao mine, Daqingshan Coalfield, northern China. Ore Geol. Rev. 2019, 111, 102951. [Google Scholar] [CrossRef]
- Kang, J.; Zhao, L.; Wang, X.; Song, W.; Wang, P.; Wang, R.; Li, T.; Sun, J.; Jia, S.; Zhu, Q. Abundance and geological implication of rare earth elements and yttrium in coals from the Suhaitu Mine, Wuda Coalfield, northern China. Energy Explor. Exploit. 2014, 32, 873–890. [Google Scholar] [CrossRef]
- Chen, J.; Chen, P.; Yao, D.; Liu, Z.; Wu, Y.; Liu, W.; Hu, Y. Mineralogy and geochemistry of Late Permian coals from the Donglin Coal Mine in the Nantong coalfield in Chongqing, southwestern China. Int. J. Coal Geol. 2015, 149, 24–40. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Zhou, Y.; Chou, C.; Wang, X.; Zhao, L.; Zhu, X. Mineralogy and geochemistry of a superhigh-organic-sulfur coal, Yanshan Coalfield, Yunnan, China: Evidence for a volcanic ash component and influence by submarine exhalation. Chem. Geol. 2008, 255, 182–194. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.; Zhang, W.; Song, W.; Wang, P. Enrichment of U-Se-Mo-Re-V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, W.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Song, W.; Wang, X.; Li, X.; Zhao, L.; Kang, H.; et al. Factors controlling geochemical and mineralogical compositions of coals preserved within marine carbonate successions: A case study from the Heshan Coalfield, southern China. Int. J. Coal Geol. 2013, 109, 77–100. [Google Scholar] [CrossRef]
- Liu, J.; Yang, Z.; Yan, X.; Ji, D.; Yang, Y.; Hu, L. Modes of occurrence of highly-elevated trace elements in superhigh-organic-sulfur coals. Fuel 2015, 156, 190–197. [Google Scholar] [CrossRef]
- Medunić, G.; Grigore, M.; Dai, S.; Berti, D.; Hochella, M.F.; Mastalerz, M.; Valentim, B.; Guedes, A.; Hower, J.C. Characterization of superhigh-organic-sulfur Raša coal, Istria, Croatia, and its environmental implication. Int. J. Coal Geol. 2020, 217, 103344. [Google Scholar] [CrossRef]
- Han, D.; Yang, Q. Coal Geology of China, Vol. 2; Publishing House of China Coal Industry: Beijing, China, 1980. (In Chinese) [Google Scholar]
- Liu, G. Permo-Carboniferous paleography and coal accumulation and their tectonic control in North China and South China continental plates. Int. J. Coal Geol. 1990, 16, 73–117. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Tang, Y.; Shao, L.; Li, S. Distribution, isotopic variation and origin of sulfur in coals in the Wuda coalfield, Inner Mongolia, China. Int. J. Coal Geol. 2002, 51, 237–250. [Google Scholar] [CrossRef]
- Shan, B.; Wang, G.; Cao, F.; Wu, D.; Liang, W.; Sun, R. Mercury emission from underground coal fires in the mining goaf of the Wuda Coalfield, China. Ecotox. Environ. Saf. 2019, 182, 109409. [Google Scholar] [CrossRef] [PubMed]
- Cao, Q.; Liang, H.; Chen, Y.; Li, Z.; Liu, H. Distribution of mercury content in topsoil of coal base, Wuda, China. J. Min. Sci. Technol. 2018, 3, 315–322, (In Chinese with English abstract). [Google Scholar]
- ASTM Standard D3173-11. Test Method for Moisture in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3174-11. Test Method for Ash in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3175-11. Test Method for Volatile Matter in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2011. [Google Scholar]
- ASTM Standard D3177-02. Test Methods for Total Sulfur in the Analysis Sample of Coal and Coke; ASTM International: West Conshohocken, PA, USA, 2002; (Reapproved 2007). [Google Scholar]
- Taylor, J.C. Computer programs for standardless quantitative analysis of minerals using the full powder diffraction profile. Powder Diffract. 1991, 6, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Zhou, Y.; Hower, J.C.; Li, D.; Chen, W.; Zhu, X. Chemical and mineralogical compositions of silicic, mafic, and alkali tonsteins in the late Permian coals from the Songzao Coalfield, Chongqing, Southwest China. Chem. Geol. 2011, 282, 29–44. [Google Scholar] [CrossRef]
- Li, X.; Dai, S.; Zhang, W.; Li, T.; Zheng, X.; Chen, W. Determination of As and Se in coal and coal combustion products using closed vessel microwave digestion and collision/reaction cell technology (CCT) of inductively coupled plasma mass spectrometry (ICP-MS). Int. J. Coal Geol. 2014, 124, 1–4. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Ward, C.R.; Guo, W.; Song, H.; O’Keefe, J.M.K.; Xie, P.; Hood, M.M.; Yan, X. Elements and phosphorus minerals in the middle Jurassic inertinite-rich coals of the Muli Coalfield on the Tibetan Plateau. Int. J. Coal Geol. 2015, 144–145, 23–47. [Google Scholar] [CrossRef]
- ASTM Standard D5987-96. Standard Test Method for Total Fluorine in Coal and Coke by Pyrohydrolytic Extraction and Ion Selective Electrode or Ion Chromatograph Methods; ASTM International: West Conshohocken, PA, USA, 2002; (Reapproved 2007). [Google Scholar]
- Dai, S.; Zhao, L.; Peng, S.; Chou, C.L.; Wang, X.; Zhang, Y.; Li, D.; Sun, Y. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant, Inner Mongolia, China. Int. J. Coal Geol. 2010, 81, 320–332. [Google Scholar] [CrossRef]
- Guedes, A.; Valentim, B.; Prieto, A.C.; Sanz, A.; Flores, D.; Noronha, F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy. Int. J. Coal Geol. 2008, 73, 359–370. [Google Scholar] [CrossRef]
- Huggins, F.; Goodarzi, F. Environmental assessment of elements and polyaromatic hydrocarbons emitted from a Canadian coal-fired power plant. Int. J. Coal Geol. 2009, 77, 282–288. [Google Scholar] [CrossRef]
- Mardon, S.M.; Hower, J.C.; O’Keefe, J.M.K.; Marks, M.N.; Hedges, D.H. Coal combustion by-product quality at two stoker boilers: Coal source vs. fly ash collection system design. Int. J. Coal Geol. 2008, 75, 248–254. [Google Scholar] [CrossRef]
- Dai, S.; Seredin, V.V.; Ward, C.R.; Jiang, J.; Hower, J.C.; Song, X.; Jiang, Y.; Wang, X.; Gornostaeva, T.; Li, X.; et al. Composition and modes of occurrence of minerals and elements in coal combustion products derived from high-Ge coals. Int. J. Coal Geol. 2014, 121, 79–97. [Google Scholar] [CrossRef]
- Dai, S.; Ren, D.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.P.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World average for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution; Blackwell: Oxford, UK, 1985; p. 312. [Google Scholar]
- Dai, S.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Hower, J.C.; Groppo, J.G.; Graham, U.M.; Ward, C.R.; Kostova, I.; Maroto-Valer, M.M.; Dai, S. Coal-derived unburned carbons in fly ash: A review. Int. J. Coal Geol. 2017, 179, 11–27. [Google Scholar] [CrossRef]
- Vassilev, S.V.; Vassileva, C.G. Mineralogy of combustion wastes from coal-fired power stations. Fuel Process. Technol. 1996, 47, 261–280. [Google Scholar] [CrossRef]
- Spears, D.A. Role of clay minerals in UK coal combustion. Appl. Clay Sci. 2000, 16, 87–95. [Google Scholar] [CrossRef]
- Vassileva, C.G.; Vassilev, S.V. Behaviour of inorganic matter during heating of Bulgarian coals: 1. Lignites. Fuel Process. Technol. 2005, 86, 1297–1333. [Google Scholar] [CrossRef]
- Jak, E.; Degterov, S.; Hayes, P.C.; Pelton, A.D. Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirements for coal ash slags. Fuel 1998, 77, 77–84. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Dai, S.; Hower, J.C.; Finkelman, R.B.; Graham, I.T.; French, D.; Ward, C.R.; Eskenazy, G.; Wei, Q.; Zhao, L. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 2020, 218, 103347. [Google Scholar] [CrossRef]
- Liu, J.; Ward, C.R.; Graham, I.T.; French, D.; Dai, S.; Song, X. Modes of occurrence of non-mineral inorganic elements in lignites from the Mile Basin, Yunnan Province, China. Fuel 2018, 222, 146–155. [Google Scholar] [CrossRef]
- ASTM Standard C618-19. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete; ASTM International: West Conshohocken, PA, USA, 2019. [Google Scholar]
- Hower, J.C. Petrographic examination of coal-combustion fly ash. Int. J. Coal Geol. 2012, 92, 90–97. [Google Scholar] [CrossRef]
- Meij, R. Trace element behaviors in coal-fired power plants. Fuel Process. Technol. 1994, 39, 199–217. [Google Scholar] [CrossRef]
- Querol, X.; Juan, R.; Lopez-Soler, A.; Fernandez-Turiel, J.; Ruiz, C.R. Mobility of trace elements from coal and combustion wastes. Fuel 1996, 75, 821–838. [Google Scholar] [CrossRef]
- Huggins, F.E.; Huffman, G.P. How do lithophile elements occur in organic association in bituminous coals? Int. J. Coal Geol. 2004, 58, 193–204. [Google Scholar] [CrossRef]
- Zhao, L.; Ward, C.; French, D.; Graham, I. Major and Trace element geochemistry of coals and intra-seam claystones from the Songzao Coalfield, SW China. Minerals 2015, 5, 870–893. [Google Scholar] [CrossRef]
- Clarke, L.B.; Sloss, L.L. Trace Elements-Emissions from Coal Combustion and Gasification; IEA Coal Research: London, UK, 1992. [Google Scholar]
- Dai, S.; Zhao, L.; Hower, J.C.; Johnston, M.N.; Song, W.; Wang, P.; Zhang, S. Petrology, mineralogy, and chemistry of size-fractioned fly ash from the Jungar Power Plant, Inner Mongolia, China, with emphasis on the distribution of rare earth elements. Energy Fuels 2014, 28, 1502–1514. [Google Scholar] [CrossRef]
- Ruppert, L.F.; Minkin, J.A.; McGee, J.J.; Cecil, C.B. An unusual occurrence of arsenic-bearing pyrite in the Upper Freeport coal bed, west-central Pennsylvania. Energy Fuels 1992, 6, 120–125. [Google Scholar] [CrossRef]
- Eskenazy, G.M. Geochemistry of arsenic and antimony in Bulgarian coals. Chem. Geol. 1995, 119, 239–254. [Google Scholar] [CrossRef]
- Hower, J.C.; Robertson, J.D.; Wong, A.S.; Eble, C.F.; Ruppert, L.F. Arsenic and lead concentrations in the pond creek and fire clay coal beds, Eastern Kentucky coal field. Appl. Geochem. 1997, 12, 281–289. [Google Scholar] [CrossRef]
- Ward, C.R. Mineralogical analysis in hazard assessment. In Geological Hazards-the Impact to Mining; Doyle, R., Moloney, J., Eds.; Coalfield Geology Council of New South Wales: Newcastle, Australia, 2001; pp. 81–88. [Google Scholar]
- Yudovich, Y.E.; Ketris, M.P. Arsenic in coal: A review. Int. J. Coal Geol. 2005, 61, 141–196. [Google Scholar] [CrossRef]
- Wei, Q.; Rimmer, S.M. Acid solubility and affinities of trace elements in the high-Ge coals from Wulantuga (Inner Mongolia) and Lincang (Yunnan Province), China. Int. J. Coal Geol. 2017, 178, 39–55. [Google Scholar] [CrossRef]
- Ratafia-Brown, J.A. Overview of trace element partitioning in flames and furnaces of utility coal-fired boilers. Fuel Process. Technol. 1994, 39, 139–158. [Google Scholar] [CrossRef]
- Lu, J.; Sun, J.; Zhao, C. Occurrence of As in coal and its behavior during coal combustion. Coal Geol. Explor. 2003, 31, 6–9, (In Chinese with English abstract). [Google Scholar]
- Bai, X.; Li, W.; Chen, W. The study on distribution of selenium in Chinese coals and its washability. J. China Coal Soc. 2003, 281, 69–73, (In Chinese with English abstract). [Google Scholar]
- Hower, J.C.; Robertson, J.D. Clausthalite in coal. Int. J. Coal Geol. 2003, 534, 219–225. [Google Scholar] [CrossRef]
- Dai, S.; Wang, X.; Seredin, V.V.; Hower, J.C.; Ward, C.R.; O’Keefe, J.M.K.; Huang, W.; Li, T.; Li, X.; Liu, H.; et al. Petrology, mineralogy, and geochemistry of the Ge-rich coal from the Wulantuga Ge ore deposit, Inner Mongolia, China: New data and genetic implications. Int. J. Coal Geol. 2012, 90–91, 72–99. [Google Scholar] [CrossRef]
- Dai, S.; Yang, J.; Ward, C.R.; Hower, J.C.; Liu, H.; Garrison, T.M.; French, D.; O’Keefe, J.M.K. Geochemical and mineralogical evidence for a coal-hosted uranium deposit in the Yili Basin, Xinjiang, northwestern China. Ore Geol. Rev. 2015, 70, 1–30. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, D.; Zheng, C.; Zeng, R.; Chou, C.-L.; Liu, J. Trace element abundances in major minerals of Late Permian coals from southwestern Guizhou Province, China. Int. J. Coal Geol. 2002, 53, 55–64. [Google Scholar] [CrossRef]
- Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Johnson, S.Y.; Brownfield, I.K.; Rice, C.A. Geologic setting and characterization of coals and the modes of occurrence of selected elements from the Franklin coal zone, Puget Group, John Henry No. 1 mine, King County, Washington, USA. Int. J. Coal Geol. 2005, 63, 247–275. [Google Scholar] [CrossRef]
- Dai, S.; Zeng, R.; Sun, Y. Enrichment of arsenic, antimony, mercury, and thallium in a late Permian anthracite from Xingren, Guizhou, southwest China. Int. J. Coal Geol. 2006, 66, 217–226. [Google Scholar] [CrossRef]
- Rizeq, R.G.; Hansell, D.W.; Seeker, W.R. Predictions of metals emissions and partitioning in coal-fired combustion systems. Fuel Process. Technol. 1994, 39, 219–236. [Google Scholar] [CrossRef]
Power Plant | Proximate Analysis (%) | St,d (%) | ||
---|---|---|---|---|
Mad | Ad | Vdaf | ||
Xilaifeng a | 1.07 (0.31) | 52.93 (6.99) | 40.11 (3.87) | 2.22 (0.62) |
Damo b | 1.07 (0.09) | 48.36 (4.67) | 36.52 (1.97) | 3.32 (0.60) |
Power Plant | Kaolinite | Quartz | Illite | Pyrite | Gypsum |
---|---|---|---|---|---|
Xilaifeng a | 72.8 | 9.0 | 8.9 | 3.9 | 2.7 |
Damo b | 69.3 | 12.8 | 8.5 | 7.3 | 1.9 |
Boehmite | Anatase | Dolomite | Calcite | Anhydrite | Diaspore |
2.2 | 0.3 | 0.1 | <0.1 | ||
<0.1 | 0.1 | <0.1 |
Element | Coal-X | Coal-D | Coal Ash-X | Coal Ash-D | World Coal a | CC-X | CC-D |
---|---|---|---|---|---|---|---|
Al2O3 | 19.79 | 16.54 | 37.4 | 34.24 | 5.98 | 3.31 | 2.77 |
CaO | 0.41 | 0.36 | 0.81 | 0.74 | 1.23 | 0.34 | 0.29 |
Fe2O3 | 2.81 | 3.95 | 5.33 | 8.23 | 4.85 | 0.58 | 0.81 |
K2O | 0.52 | 0.69 | 0.97 | 1.41 | 0.19 | 2.72 | 3.63 |
MgO | 0.30 | 0.26 | 0.57 | 0.54 | 0.22 | 1.36 | 1.19 |
MnO | 0.01 | 0.01 | 0.02 | 0.02 | 0.015 | 0.84 | 0.50 |
Na2O | 0.07 | 0.05 | 0.13 | 0.10 | 0.16 | 0.44 | 0.31 |
P2O5 | 0.11 | 0.17 | 0.22 | 0.34 | 0.092 | 1.23 | 1.83 |
SiO2 | 27.24 | 25.26 | 51.37 | 52.18 | 8.47 | 3.22 | 2.98 |
TiO2 | 0.77 | 0.60 | 1.47 | 1.24 | 0.33 | 2.35 | 1.81 |
As | 6.61 | 7.85 | 12.5 | 16.2 | 7.6 | 0.87 | 1.03 |
Ba | 116 | 164 | 219 | 340 | 150 | 0.77 | 1.10 |
Be | 3.09 | 2.59 | 5.84 | 5.36 | 1.2 | 2.58 | 2.16 |
Bi | 0.75 | 0.84 | 1.42 | 1.74 | 0.84 | 0.89 | 1.00 |
Cd | 0.44 | 0.31 | 0.83 | 0.64 | 0.24 | 1.83 | 1.29 |
Co | 6.39 | 5.92 | 12.1 | 12.2 | 4.2 | 1.52 | 1.41 |
Cr | 21.7 | 25.3 | 41.1 | 52.3 | 15 | 1.45 | 1.69 |
Cs | 1.68 | 3.10 | 3.17 | 6.41 | 0.98 | 1.71 | 3.16 |
Cu | 18.7 | 29.2 | 35.4 | 60.3 | 15 | 1.25 | 1.94 |
F | 270 | 386 | 510 | 798 | 90 | 3.00 | 4.29 |
Ga | 25.1 | 14.5 | 47.4 | 29.9 | 5.5 | 4.57 | 2.63 |
Ge | 1.54 | 1.83 | 2.91 | 3.78 | 2 | 0.77 | 0.92 |
Hf | 7.19 | 4.78 | 13.6 | 9.88 | 1.2 | 5.99 | 3.98 |
Hg | 0.32 | 0.61 | 0.60 | 1.26 | 0.1 | 3.20 | 6.10 |
In | 0.10 | 0.07 | 0.19 | 0.14 | 0.021 | 4.76 | 3.33 |
Li | 190 | 44.7 | 360 | 92.4 | 10 | 19.04 | 4.47 |
Mo | 4.28 | 3.80 | 8.09 | 7.86 | 2.2 | 1.95 | 1.73 |
Nb | 19.7 | 12.5 | 37.3 | 25.9 | 3.3 | 5.98 | 3.79 |
Ni | 16.7 | 13.8 | 31.6 | 28.5 | 9 | 1.86 | 1.53 |
Pb | 29.0 | 29.6 | 54.9 | 61.2 | 6.6 | 4.40 | 4.49 |
Rb | 16.5 | 29.0 | 31.2 | 60.0 | 10 | 1.65 | 2.90 |
Sb | 0.55 | 0.55 | 1.04 | 1.14 | 0.84 | 0.65 | 0.65 |
Sc | 8.34 | 2.41 | 15.8 | 4.98 | 4.1 | 2.03 | 0.59 |
Se | 4.07 | 3.75 | 7.69 | 7.75 | 1 | 4.07 | 3.75 |
Sn | 3.61 | 2.87 | 6.82 | 5.93 | 0.79 | 4.57 | 3.63 |
Sr | 174 | 67.3 | 329 | 139 | 120 | 1.45 | 0.56 |
Ta | 1.31 | 1.05 | 2.47 | 2.17 | 0.26 | 5.04 | 4.04 |
Th | 19.3 | 7.62 | 36.5 | 15.8 | 3.3 | 5.85 | 2.31 |
Tl | 0.41 | 1.14 | 0.77 | 2.36 | 0.68 | 0.60 | 1.68 |
U | 6.68 | 5.11 | 12.6 | 10.6 | 2.9 | 2.30 | 1.76 |
V | 46.8 | 57.1 | 88.5 | 118 | 22 | 2.13 | 2.59 |
Zn | 36.2 | 26.3 | 68.4 | 54.3 | 18 | 2.01 | 1.46 |
Zr | 266 | 177 | 502 | 366 | 35 | 7.59 | 5.06 |
La | 34.1 | 16.4 | 64.3 | 33.8 | 10 | 3.41 | 1.64 |
Ce | 75.3 | 43.0 | 142 | 88.9 | 22 | 3.42 | 1.96 |
Pr | 7.56 | 3.52 | 14.3 | 7.28 | 3.5 | 2.16 | 1.01 |
Nd | 28.7 | 13.5 | 54.2 | 27.9 | 11 | 2.61 | 1.22 |
Sm | 5.31 | 2.36 | 10.0 | 4.88 | 1.9 | 2.79 | 1.24 |
Eu | 1.01 | 0.43 | 1.91 | 0.89 | 0.5 | 2.02 | 0.86 |
Gd | 5.89 | 2.40 | 11.1 | 4.96 | 2.6 | 2.27 | 0.92 |
Tb | 0.81 | 0.29 | 1.53 | 0.60 | 0.32 | 2.53 | 0.91 |
Dy | 4.86 | 1.69 | 9.18 | 3.49 | 2 | 2.43 | 0.85 |
Y | 23.5 | 7.99 | 44.4 | 16.5 | 8.6 | 2.73 | 0.93 |
Ho | 0.90 | 0.30 | 1.70 | 0.62 | 0.5 | 1.80 | 0.60 |
Er | 2.73 | 0.92 | 5.16 | 1.90 | 0.85 | 3.21 | 1.08 |
Tm | 0.37 | 0.12 | 0.70 | 0.25 | 0.31 | 1.19 | 0.39 |
Yb | 2.65 | 0.88 | 5.01 | 1.82 | 1 | 2.65 | 0.88 |
Lu | 0.37 | 0.12 | 0.70 | 0.25 | 0.19 | 1.95 | 0.63 |
Ash yield (%) | 52.93 | 48.36 |
Power Plant | Sample | ROM (%) | Glass Phase | Quartz | Hematite | Illite | Anhydrite | Gypsum | Siderite | Calcite | Lime | Diaspore | Rutile |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Xilaifeng | FA-X a | 7.07 | 63.7 | 5.3 | 8.0 | 6.0 | 12.1 | 2.6 | 2.2 | <0.1 | |||
BA-X b | 2.29 | 72.6 | 12.4 | 3.0 | 5.6 | 5.8 | 0.2 | 0.3 | 0.1 | ||||
Damo | FA(F)-D c | 12.44 | 76.0 | 7.1 | 10.5 | 2.9 | 0.9 | 2.5 | 0.2 | ||||
FA(C)-D d | 11.23 | 70.6 | 10.3 | 14.4 | 2.5 | 0.8 | 1.5 | ||||||
BA-D e | 4.02 | 63.2 | 22.0 | 4.0 | 9.5 | 1.0 | 0.3 |
Element | Initial CCPs | CCPs on High-Temperature Ash (HTA) Basis | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
FA-X a | BA-X b | FA(F)-D c | FA(C)-D d | BA-D e | FA-X | BA-X | FA(F)-D | FA(C)-D | BA-D | |
Al2O3 | 29.63 | 32.24 | 30.47 | 29.31 | 29.83 | 31.84 | 32.99 | 34.80 | 33.02 | 31.07 |
CaO | 9.15 | 4.11 | 1.24 | 1.12 | 0.27 | 9.93 | 4.21 | 1.42 | 1.26 | 0.29 |
Fe2O3 | 6.80 | 3.81 | 9.92 | 11.35 | 7.04 | 7.31 | 3.90 | 11.33 | 12.78 | 7.35 |
K2O | 0.65 | 1.03 | 0.75 | 0.88 | 1.73 | 0.70 | 1.05 | 0.85 | 0.99 | 1.80 |
MgO | 0.57 | 0.65 | 0.57 | 0.64 | 0.57 | 0.61 | 0.67 | 0.66 | 0.72 | 0.59 |
MnO | 0.02 | 0.03 | 0.01 | 0.02 | 0.03 | 0.03 | 0.03 | 0.01 | 0.02 | 0.03 |
Na2O | 0.14 | 0.11 | 0.44 | 0.40 | 0.10 | 0.15 | 0.11 | 0.50 | 0.45 | 0.10 |
P2O5 | 0.23 | 0.10 | 0.50 | 0.35 | 0.09 | 0.25 | 0.10 | 0.57 | 0.39 | 0.10 |
SiO2 | 36.66 | 48.96 | 41.16 | 42.09 | 54.72 | 39.38 | 50.10 | 47.00 | 47.40 | 57.02 |
TiO2 | 1.35 | 1.10 | 1.17 | 1.11 | 1.07 | 1.45 | 1.13 | 1.34 | 1.25 | 1.11 |
As | 24.8 | 6.98 | 33.1 | 27.6 | 6.27 | 26.7 | 7.15 | 37.8 | 31.1 | 6.53 |
Ba | 377 | 186 | 284 | 279 | 139 | 406 | 190 | 324 | 314 | 145 |
Be | 6.50 | 4.00 | 5.95 | 5.43 | 3.34 | 7.00 | 4.09 | 6.80 | 6.12 | 3.48 |
Bi | 1.72 | 1.01 | 1.68 | 1.43 | 0.81 | 1.85 | 1.03 | 1.92 | 1.62 | 0.84 |
Cd | 0.99 | 0.57 | 0.79 | 0.72 | 0.45 | 1.06 | 0.58 | 0.90 | 0.81 | 0.47 |
Co | 11.1 | 14.1 | 9.42 | 15.6 | 16.2 | 11.9 | 14.4 | 10.8 | 17.6 | 16.9 |
Cr | 36.9 | 44.0 | 37.1 | 46.7 | 64.6 | 39.7 | 45.1 | 42.4 | 52.6 | 67.3 |
Cs | 2.57 | 3.62 | 2.55 | 3.44 | 5.39 | 2.77 | 3.70 | 2.92 | 3.87 | 5.61 |
Cu | 41.2 | 27.7 | 47.6 | 51.4 | 32.8 | 44.3 | 28.4 | 54.3 | 57.9 | 34.1 |
F | 933 | 147 | 751 | 665 | 248 | 1004 | 151 | 857 | 749 | 258 |
Ga | 45.2 | 39.9 | 36.4 | 33.1 | 30.7 | 48.7 | 40.8 | 41.6 | 37.3 | 32.0 |
Ge | 4.17 | 2.35 | 3.61 | 3.28 | 2.07 | 4.48 | 2.41 | 4.12 | 3.70 | 2.16 |
Hf | 14.6 | 10.2 | 11.8 | 10.4 | 7.45 | 15.8 | 10.5 | 13.5 | 11.7 | 7.77 |
Hg | 1.32 | 0.002 | 1.79 | 1.31 | 0.005 | 1.42 | 0.002 | 2.05 | 1.47 | 0.005 |
In | 0.21 | 0.15 | 0.16 | 0.15 | 0.08 | 0.22 | 0.15 | 0.18 | 0.17 | 0.09 |
Li | 325 | 288 | 226 | 204 | 154 | 350 | 295 | 258 | 230 | 160 |
Mo | 11.8 | 4.75 | 10.2 | 11.3 | 3.74 | 12.7 | 4.86 | 11.7 | 12.7 | 3.89 |
Nb | 32.2 | 26.5 | 26.3 | 24.1 | 19.7 | 34.6 | 27.1 | 30.0 | 27.2 | 20.5 |
Ni | 25.4 | 39.6 | 25.7 | 44.2 | 42.9 | 27.3 | 40.5 | 29.3 | 49.8 | 44.7 |
Pb | 81.4 | 45.0 | 66.5 | 59.9 | 32.2 | 87.5 | 46.0 | 76.0 | 67.5 | 33.6 |
Rb | 23.4 | 31.9 | 14.1 | 17.6 | 35.5 | 25.2 | 32.6 | 16.1 | 19.8 | 37.0 |
Sb | 1.52 | 0.68 | 1.54 | 1.32 | 0.69 | 1.63 | 0.70 | 1.76 | 1.49 | 0.71 |
Sc | 18.9 | 9.96 | 12.2 | 11.3 | 4.31 | 20.3 | 10.2 | 13.9 | 12.8 | 4.49 |
Se | 17.4 | 1.00 | 12.6 | 11.3 | 0.74 | 18.7 | 1.03 | 14.3 | 12.7 | 0.77 |
Sn | 7.13 | 5.50 | 5.98 | 5.67 | 4.11 | 7.67 | 5.63 | 6.83 | 6.39 | 4.28 |
Sr | 614 | 163 | 234 | 173 | 52.2 | 660 | 167 | 267 | 195 | 54.3 |
Ta | 2.71 | 2.37 | 2.20 | 2.28 | 1.74 | 2.92 | 2.43 | 2.51 | 2.56 | 1.82 |
Th | 41.8 | 21.5 | 30.8 | 27.6 | 7.12 | 45.0 | 22.0 | 35.2 | 31.1 | 7.42 |
Tl | 0.88 | 0.75 | 2.65 | 2.69 | 1.64 | 0.95 | 0.77 | 3.03 | 3.03 | 1.70 |
U | 14.3 | 7.90 | 11.8 | 11.6 | 7.32 | 15.4 | 8.08 | 13.5 | 13.1 | 7.62 |
V | 98.2 | 86.2 | 92.4 | 100 | 102 | 106 | 88.2 | 106 | 113 | 106 |
Zn | 75.8 | 57.3 | 75.4 | 79.0 | 73.0 | 81.6 | 58.7 | 86.1 | 89.0 | 76.0 |
Zr | 563 | 330 | 469 | 405 | 261 | 606 | 338 | 536 | 456 | 272 |
La | 85.8 | 45.4 | 64.7 | 58.1 | 22.1 | 92.3 | 46.5 | 73.9 | 65.5 | 23.0 |
Ce | 175 | 98.5 | 123 | 121 | 62.0 | 189 | 101 | 141 | 136 | 64.6 |
Pr | 18.2 | 10.3 | 14.3 | 13.3 | 5.58 | 19.6 | 10.6 | 16.3 | 15.0 | 5.81 |
Nd | 69.3 | 39.3 | 54.9 | 51.9 | 21.8 | 74.6 | 40.2 | 62.7 | 58.4 | 22.8 |
Sm | 13.2 | 7.27 | 10.3 | 9.72 | 3.58 | 14.2 | 7.44 | 11.8 | 11.0 | 3.73 |
Eu | 2.37 | 1.28 | 1.84 | 1.76 | 0.68 | 2.55 | 1.31 | 2.10 | 1.98 | 0.71 |
Gd | 14.1 | 7.48 | 10.9 | 10.1 | 3.68 | 15.2 | 7.66 | 12.5 | 11.4 | 3.83 |
Tb | 1.98 | 1.01 | 1.46 | 1.34 | 0.43 | 2.13 | 1.03 | 1.67 | 1.51 | 0.45 |
Dy | 12.0 | 5.97 | 8.85 | 8.11 | 2.34 | 12.9 | 6.11 | 10.1 | 9.14 | 2.43 |
Y | 55.8 | 28.8 | 45.0 | 40.3 | 10.6 | 60.1 | 29.4 | 51.4 | 45.4 | 11.1 |
Ho | 2.20 | 1.07 | 1.63 | 1.49 | 0.41 | 2.37 | 1.10 | 1.86 | 1.68 | 0.43 |
Er | 6.72 | 3.28 | 5.01 | 4.59 | 1.27 | 7.23 | 3.35 | 5.73 | 5.17 | 1.32 |
Tm | 0.90 | 0.44 | 0.67 | 0.62 | 0.17 | 0.97 | 0.45 | 0.77 | 0.70 | 0.18 |
Yb | 6.47 | 3.15 | 4.97 | 4.60 | 1.34 | 6.96 | 3.23 | 5.67 | 5.18 | 1.39 |
Lu | 0.89 | 0.43 | 0.74 | 0.68 | 0.19 | 0.96 | 0.44 | 0.84 | 0.77 | 0.20 |
ROM (%) | 7.07 | 2.29 | 12.44 | 11.23 | 4.02 | - | - | - | - | - |
Element | Xilaifeng | Damo | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
f/b | *f/b | RE-f | RE-b | f(f)/b | f(c)/b | *f(f)/b | *f(c)/b | RE-f(f) | RE-f(c) | RE-b | |
Al2O3 | 0.92 | 0.97 | 0.79 | 0.86 | 1.02 | 0.98 | 1.12 | 1.06 | 0.89 | 0.86 | 0.87 |
CaO | 2.23 | 2.36 | 11.81 | 5.31 | 4.59 | 4.15 | 4.90 | 4.34 | 1.67 | 1.50 | 0.36 |
Fe2O3 | 1.78 | 1.87 | 1.28 | 0.72 | 1.41 | 1.61 | 1.54 | 1.74 | 1.21 | 1.39 | 0.86 |
K2O | 0.63 | 0.67 | 0.66 | 1.05 | 0.43 | 0.51 | 0.47 | 0.55 | 0.53 | 0.62 | 1.21 |
MgO | 0.88 | 0.91 | 1.01 | 1.15 | 1.00 | 1.12 | 1.12 | 1.22 | 1.06 | 1.19 | 1.06 |
MnO | 0.67 | 1.00 | 1.06 | 1.59 | 0.33 | 0.67 | 0.33 | 0.67 | 0.48 | 0.97 | 1.45 |
Na2O | 1.27 | 1.36 | 1.06 | 0.83 | 4.40 | 4.00 | 5.00 | 4.50 | 4.26 | 3.87 | 0.97 |
P2O5 | 2.30 | 2.50 | 1.11 | 0.48 | 5.56 | 3.89 | 5.70 | 3.90 | 1.42 | 1.00 | 0.26 |
SiO2 | 0.75 | 0.79 | 0.71 | 0.95 | 0.75 | 0.77 | 0.82 | 0.83 | 0.79 | 0.81 | 1.05 |
TiO2 | 1.23 | 1.28 | 0.93 | 0.76 | 1.09 | 1.04 | 1.21 | 1.13 | 0.94 | 0.89 | 0.86 |
As | 3.55 | 3.73 | 1.98 | 0.56 | 5.28 | 4.41 | 5.79 | 4.77 | 2.04 | 1.70 | 0.39 |
Ba | 2.03 | 2.14 | 1.72 | 0.85 | 2.04 | 2.00 | 2.23 | 2.16 | 0.84 | 0.82 | 0.41 |
Be | 1.63 | 1.71 | 1.11 | 0.69 | 1.78 | 1.63 | 1.95 | 1.76 | 1.11 | 1.01 | 0.62 |
Bi | 1.70 | 1.80 | 1.21 | 0.71 | 2.07 | 1.77 | 2.29 | 1.93 | 0.97 | 0.82 | 0.47 |
Cd | 1.74 | 1.83 | 1.19 | 0.69 | 1.76 | 1.60 | 1.91 | 1.72 | 1.23 | 1.12 | 0.70 |
Co | 0.79 | 0.83 | 0.92 | 1.16 | 0.58 | 0.97 | 0.64 | 1.05 | 0.77 | 1.28 | 1.32 |
Cr | 0.84 | 0.88 | 0.90 | 1.07 | 0.57 | 0.72 | 0.63 | 0.78 | 0.71 | 0.89 | 1.24 |
Cs | 0.71 | 0.75 | 0.81 | 1.14 | 0.47 | 0.64 | 0.52 | 0.69 | 0.40 | 0.54 | 0.84 |
Cu | 1.49 | 1.56 | 1.16 | 0.78 | 1.45 | 1.57 | 1.59 | 1.70 | 0.79 | 0.85 | 0.54 |
F | 6.35 | 6.66 | 1.83 | 0.29 | 3.03 | 2.68 | 3.32 | 2.90 | 0.94 | 0.83 | 0.31 |
Ga | 1.13 | 1.19 | 0.95 | 0.84 | 1.19 | 1.08 | 1.30 | 1.16 | 1.22 | 1.10 | 1.03 |
Ge | 1.77 | 1.86 | 1.43 | 0.81 | 1.74 | 1.58 | 1.91 | 1.71 | 0.95 | 0.87 | 0.55 |
Hf | 1.43 | 1.50 | 1.08 | 0.75 | 1.59 | 1.40 | 1.74 | 1.51 | 1.20 | 1.05 | 0.75 |
Hg | 660 | 710 | 2.18 | 0.00 | 358 | 262 | 410 | 294 | 1.42 | 1.04 | 0.00 |
In | 1.40 | 1.47 | 1.11 | 0.79 | 2.00 | 1.88 | 2.00 | 1.89 | 1.11 | 1.04 | 0.55 |
Li | 1.13 | 1.19 | 0.90 | 0.80 | 1.47 | 1.33 | 1.61 | 1.44 | 2.45 | 2.21 | 1.66 |
Mo | 2.48 | 2.60 | 1.46 | 0.59 | 2.74 | 3.01 | 3.01 | 3.26 | 1.30 | 1.43 | 0.48 |
Nb | 1.21 | 1.28 | 0.86 | 0.71 | 1.33 | 1.22 | 1.46 | 1.32 | 1.02 | 0.93 | 0.76 |
Ni | 0.64 | 0.67 | 0.80 | 1.25 | 0.60 | 1.03 | 0.66 | 1.11 | 0.90 | 1.55 | 1.50 |
Pb | 1.81 | 1.90 | 1.48 | 0.82 | 2.07 | 1.86 | 2.26 | 2.01 | 1.09 | 0.98 | 0.53 |
Rb | 0.74 | 0.77 | 0.75 | 1.02 | 0.40 | 0.49 | 0.44 | 0.53 | 0.24 | 0.29 | 0.59 |
Sb | 2.24 | 2.33 | 1.46 | 0.65 | 2.23 | 1.91 | 2.48 | 2.10 | 1.35 | 1.16 | 0.61 |
Sc | 1.90 | 1.99 | 1.20 | 0.63 | 2.82 | 2.63 | 3.09 | 2.84 | 2.44 | 2.27 | 0.86 |
Se | 17.35 | 18.13 | 2.26 | 0.13 | 16.97 | 15.26 | 18.62 | 16.52 | 1.62 | 1.46 | 0.10 |
Sn | 1.30 | 1.36 | 1.05 | 0.81 | 1.45 | 1.38 | 1.60 | 1.49 | 1.01 | 0.96 | 0.69 |
Sr | 3.77 | 3.96 | 1.87 | 0.50 | 4.49 | 3.31 | 4.92 | 3.58 | 1.68 | 1.24 | 0.37 |
Ta | 1.14 | 1.20 | 1.09 | 0.96 | 1.26 | 1.31 | 1.38 | 1.41 | 1.01 | 1.05 | 0.80 |
Th | 1.95 | 2.05 | 1.15 | 0.59 | 4.32 | 3.88 | 4.74 | 4.19 | 1.95 | 1.75 | 0.45 |
Tl | 1.17 | 1.23 | 1.14 | 0.97 | 1.62 | 1.64 | 1.78 | 1.78 | 1.12 | 1.14 | 0.70 |
U | 1.81 | 1.90 | 1.13 | 0.63 | 1.62 | 1.59 | 1.77 | 1.72 | 1.12 | 1.10 | 0.69 |
V | 1.14 | 1.20 | 1.11 | 0.97 | 0.91 | 0.98 | 0.99 | 1.06 | 0.78 | 0.85 | 0.87 |
Zn | 1.32 | 1.39 | 1.11 | 0.84 | 1.03 | 1.08 | 1.13 | 1.17 | 1.39 | 1.45 | 1.34 |
Zr | 1.71 | 1.79 | 1.12 | 0.66 | 1.79 | 1.55 | 1.97 | 1.67 | 1.28 | 1.10 | 0.71 |
La | 1.89 | 1.99 | 1.33 | 0.71 | 2.94 | 2.64 | 3.22 | 2.85 | 1.91 | 1.72 | 0.65 |
Ce | 1.78 | 1.87 | 1.23 | 0.69 | 1.99 | 1.95 | 2.18 | 2.11 | 1.38 | 1.36 | 0.70 |
Pr | 1.76 | 1.85 | 1.27 | 0.72 | 2.56 | 2.39 | 2.81 | 2.59 | 1.96 | 1.83 | 0.77 |
Nd | 1.76 | 1.85 | 1.28 | 0.72 | 2.51 | 2.38 | 2.75 | 2.57 | 1.97 | 1.86 | 0.78 |
Sm | 1.81 | 1.90 | 1.31 | 0.72 | 2.89 | 2.72 | 3.16 | 2.94 | 2.12 | 1.99 | 0.73 |
Eu | 1.85 | 1.95 | 1.24 | 0.67 | 2.71 | 2.59 | 2.96 | 2.79 | 2.07 | 1.98 | 0.76 |
Gd | 1.89 | 1.98 | 1.27 | 0.67 | 2.96 | 2.75 | 3.25 | 2.98 | 2.20 | 2.04 | 0.74 |
Tb | 1.96 | 2.07 | 1.29 | 0.66 | 3.40 | 3.12 | 3.71 | 3.36 | 2.43 | 2.23 | 0.72 |
Dy | 2.02 | 2.12 | 1.31 | 0.65 | 3.78 | 3.47 | 4.16 | 3.76 | 2.53 | 2.32 | 0.67 |
Y | 1.94 | 2.04 | 1.26 | 0.65 | 4.24 | 3.80 | 4.65 | 4.11 | 2.73 | 2.44 | 0.64 |
Ho | 2.06 | 2.15 | 1.29 | 0.63 | 3.98 | 3.63 | 4.33 | 3.91 | 2.63 | 2.40 | 0.66 |
Er | 2.05 | 2.16 | 1.30 | 0.64 | 3.94 | 3.61 | 4.34 | 3.92 | 2.63 | 2.41 | 0.67 |
Tm | 2.05 | 2.16 | 1.29 | 0.63 | 3.94 | 3.65 | 4.28 | 3.89 | 2.70 | 2.50 | 0.69 |
Yb | 2.05 | 2.15 | 1.29 | 0.63 | 3.71 | 3.43 | 4.08 | 3.73 | 2.73 | 2.53 | 0.74 |
Lu | 2.07 | 2.18 | 1.27 | 0.62 | 3.89 | 3.58 | 4.20 | 3.85 | 2.98 | 2.74 | 0.77 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Song, W. Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China. Minerals 2020, 10, 323. https://doi.org/10.3390/min10040323
Wei Q, Song W. Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China. Minerals. 2020; 10(4):323. https://doi.org/10.3390/min10040323
Chicago/Turabian StyleWei, Qiang, and Weijiao Song. 2020. "Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China" Minerals 10, no. 4: 323. https://doi.org/10.3390/min10040323
APA StyleWei, Q., & Song, W. (2020). Mineralogical and Chemical Characteristics of Coal Ashes from Two High-Sulfur Coal-Fired Power Plants in Wuhai, Inner Mongolia, China. Minerals, 10(4), 323. https://doi.org/10.3390/min10040323