Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment
Abstract
:1. Introduction
2. Geological Setting
3. Sampling and Analytical Procedures
3.1. Samples
3.2. Analytical Procedures
4. Results and Discussion
4.1. Geochemistry
4.1.1. Major Elements
4.1.2. Trace Elements
4.1.3. Rare Earth Elements (REEs)
4.2. Provenance
4.2.1. Major Elements
4.2.2. Trace and Rare Earth Elements
4.3. Tectonic Setting
4.4. Source Area Weathering and Sediment Maturity
4.4.1. Weathering Indices CIA, ICV, CIW and PIA
4.4.2. Element Ratios as Weathering Indices
4.5. Climate and Redox Conditions
5. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Morton, A.C.; Todd, S.P.; Haughton, P.D. Developments in Sedimentary Provenance Studies. Geol. Soc. Lond. Spec. Publ. 1991, 57, 360. [Google Scholar]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Miner. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Basu, A. Influence of climatic and relief on compositions of sands released at source areas. In Provenance of Arenites; Zuffa, G.G., Ed.; NATO ASI Series (Series C: Mathematical and Physical Sciences); Springer: Dordrecht, The Netherlands, 1985; Volume 148, pp. 1–18. [Google Scholar]
- Dalai, T.K.; Krishnaswami, S.; Sarin, M.M. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 2002, 66, 3397–3416. [Google Scholar] [CrossRef]
- Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 2006, 74, 1–72. [Google Scholar] [CrossRef]
- Hossain, H.M.Z.; Roser, B.P.; Kimura, J.-I. Petrography and whole-rock geochemistry of the Tertiary Sylhet succession, northeastern Bengal Basin, Bangladesh. Sedim. Geol. 2010, 228, 171–183. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.H.; Rahman, M.J.J.; Dampare, S.B.; Suzuki, S. Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: Inference from geochemistry. J. Geochem. Explor. 2011, 111, 113–137. [Google Scholar] [CrossRef]
- Roy, D.; Roser, B.P. Geochemistry of the Tertiary sequence in the Shahbajpur-1 well, Hatia Trough, Bengal Basin, Bangladesh: Provenance, source weathering and province affinity. J. Life Earth Sci. 2012, 7, 1–13. [Google Scholar] [CrossRef]
- Hossain, H.M.Z. Major, trace and REE geochemistry of the Meghna River sediments, Bangladesh: Constraints on weathering and provenance. Geol. J. 2019, 1–23. [Google Scholar] [CrossRef]
- Heroy, D.C.; Kuehl, S.A.; Goodbred, S.L. Mineralogy of the Ganges and Brahmaputra Rivers: Implications for river switching and Late Quaternary climate change. Sed. Geol. 2003, 155, 343–359. [Google Scholar] [CrossRef]
- France-Lanord, C.; Derry, L.; Michard, A. Evolution of the Himalaya since Miocene time: Isotopic and sedimentologic evidence from Bengal Fan. Geol. Soc. Lond. Spec. Publ. 1993, 74, 603–621. [Google Scholar] [CrossRef]
- Garzanti, E.; Doglioni, C.; Vezzoli, G.; Andò, S. Orogenic belts and orogenic sediment provenances. J. Geol. 2007, 115, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem. Geol. 2010, 269, 220–236. [Google Scholar] [CrossRef]
- Goodbred, S.L., Jr.; Youngs, P.M.; Ullah, M.D.S.; Pate, R.D.; Khan, S.R.; Kuehl, S.A.; Singh, S.K.; Rahaman, W. Piecing together the Ganges-Brahmaputra-Meghna river delta: Application of Sr sediment geochemistry to reconstruct river-channel histories and Holocene delta evolution. Geol. Soc. Am. Bull. 2014, 126, 1495–1510. [Google Scholar] [CrossRef]
- Rahman, A.; Pownceby, M.I.; Haque, N.; Bruckard, W.J.; Zaman, M.N. Characterisation of titanium-rich heavy mineral concentrates from the Brahmaputra river basin, Bangladesh. Appl. Earth Sci. 2014, 123, 222–233. [Google Scholar] [CrossRef]
- Rahman, A.; Pownceby, M.I.; Haque, N.; Bruckard, W.J.; Zaman, M.N. Valuable heavy minerals from the Brahmaputra river sands of Northern Bangladesh. Appl. Earth Sci. 2016, 125, 174–188. [Google Scholar] [CrossRef]
- Mukherjee, A.; Frayar, A.E.; Thomas, W.A. Geologic, geomorphic and hydrologic framework and evolution of the Bengal basin, India and Bang. J. Asian Earth Sci. 2009, 34, 227–244. [Google Scholar] [CrossRef]
- Goscombe, B.; Gray, D.; Hand, M. Crustal architecture of the Himalayan metamorphic front in eastern Nepal. Gondwana Res. 2006, 10, 232–255. [Google Scholar] [CrossRef]
- Valdiya, K.S. Emergence and evolution of Himalaya: Reconstructing history in the light of recent studies. Prog. Phys. Geography 2002, 26, 360–399. [Google Scholar] [CrossRef]
- Clark, M.K.; Bilham, R. Miocene rise of the Shillong Plateau and the beginning of the end for the Eastern Himalaya. Earth Planet. Sci. Lett. 2008, 269, 337–351. [Google Scholar]
- Coleman, J.M. Brahmaputra River: Channel processes and sedimentation. Sediment. Geol. 1969, 3, 129–239. [Google Scholar] [CrossRef]
- Bristow, C.S. Brahmaputra River: Channel migration and deposition. In Recent Developments in Fluvial Sedimentology; Ethridge, F.G., Flores, R.M., Harvey, M.D., Eds.; SEPM Special Publication: Tulsa, OK, USA, 1987; pp. 63–74. [Google Scholar]
- Islam, M.R.; Begum, S.F.; Yamaguchi, Y.; Ogawa, K. The Ganges and Brahmaputra rivers in Bangladesh: Basin denudation and sedimentation. Hydrol. Proc. 1999, 13, 2907–2923. [Google Scholar] [CrossRef]
- Jasy, J.B.; Rahman, M.J.J.; Yeasmin, R. Sand petrology of the exposed bar deposits of the Brahmaputra–Jamuna River, Bangladesh: Implications for provenance. Bang. Geosci. J. 2010, 16, 1–22. [Google Scholar]
- Chowdhury, M.A. Petrography of the sand samples of the Brahmaputra-Jamuna River bars. Geol. Surv. Bangladesh 1989, 5, 1–20. [Google Scholar]
- Garzanti, E.; Andó, S.; France-Lanord, C.; Censi, P.; Vignola, P.; Galy, V.; Lupker, M. Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga Brahmaputra, Bangladesh). Earth Planet. Sci. Lett. 2011, 302, 107–120. [Google Scholar] [CrossRef]
- Kimura, J.-I.; Takaku, Y.; Yoshida, T. Igneous rock analysis using ICP-MS with internal standardization, isobaric ion overlap correction, and standard addition methods. Sci. Rep. Fukushima Univ. 1995, 56, 1–12. [Google Scholar]
- Thomsen, V.; Schatzlein, D.; Mercuro, D. Limits of detection in spectroscopy. Spectroscopy 2003, 18, 112–114. [Google Scholar]
- Elliot, S.; Knowles, M.; Kalinitchenko, I. A new direction in ICP-MS. Spectroscopy 2004, 19, 30–38. [Google Scholar]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution. An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Science: Oxford, UK, 1985; p. 312. [Google Scholar]
- McLennan, S.M. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem. Geophys. Geosyst. 2001, 2. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In The Crust Treatise on Geochemistry; Rudnick, R.L., Ed.; Elsevier-Pergamon: Oxford, UK, 2003. [Google Scholar]
- Herron, M.M. Geochemical classification of terrigenous sands and shales from core or log data. J. Sed. Petrol. 1988, 58, 820–829. [Google Scholar]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and sandstones. In Late Miocene Environmental Change in Nepal and the Northern Indian Subcontinent: Stable Isotopic Evidence From Paleosols; Quade, J., Cater, J.M.L., Ojha, T.P., Adam, J., Harrison, T.M., Eds.; GSA Bulletin, 107; Springer: New York, NY, USA, 1995; pp. 1381–1397. [Google Scholar]
- Boggs, S. Principles of Sedimentology and Stratigraphy: International Edition, 4th ed.; Pearson Prentice-Hall: Upper Saddle River, NJ, USA, 2006. [Google Scholar]
- Fairbridge, R.W. The Encyclopedia of Geochemistry and Environmental Sciences; Van Nostrand Reinhold Company: New York, NY, USA, 1972; p. 1344. [Google Scholar]
- Rahman, M.J.J.; Suzuki, S. Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implication for provenance, tectonic setting and weathering. Geochem. J. 2007, 41, 415–428. [Google Scholar] [CrossRef] [Green Version]
- Roser, B.P.; Korsch, R.J. Provenance signatures of sandstone-mudstone suites determined using discrimination function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Ranjan, N.; Bannerjee, D.M. Central Himalayan crystallines as the primary source for the sandstone–mudstone suites of the Siwalik Group: New geochemical evidence. Gondwana Res. 2009, 16, 687–696. [Google Scholar] [CrossRef]
- Keskin, S. Geochemistry of Çamardı Formation sediments, central Anatolia (Turkey): Implication of source area weathering, provenance, and tectonic setting. Geosci. J. 2011, 15, 185–195. [Google Scholar] [CrossRef]
- Hayashi, K.; Fujisawa, H.; Holland, H.D.; Ohmoto, H. Geochemistry of 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim. Cosmochim. Acta 1997, 61, 4115–4137. [Google Scholar] [CrossRef]
- Floyd, P.A.; Leveridge, B.E. Tectonic environment of the Devonian Gramscatho basin, south Cornwall; framework mode and geochemical evidence from turbiditic sandstones. J. Geol. Soc. Lond. 1987, 144, 531–542. [Google Scholar] [CrossRef]
- Shaw, D.M. A review of K-Rb fractionation trends by covariance analysis. Geochim. Cosmochim. Acta 1968, 32, 573–602. [Google Scholar] [CrossRef]
- Feng, R.; Kerrich, R. Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting. Geochim. Cosmochim. Acta 1990, 54, 1061–1081. [Google Scholar] [CrossRef]
- Cullers, R.L. The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies. Lithos 2000, 51, 181–203. [Google Scholar] [CrossRef]
- Cullers, R.L.; Podkovyrov, V.N. Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling. Precambrian Res. 2000, 104, 77–93. [Google Scholar] [CrossRef]
- Maheo, G.; Bertrand, H.; Guillot, S.; Villa, I.M.; Keller, F.; Capiez, P. The South Ladakh ophiolites (NW Himalaya, India): An intra-oceanic normalized arc origin with implication for the closure of the Neo-Tethys. Chem. Geol. 2004, 203, 273–303. [Google Scholar] [CrossRef]
- Condie, K.C. Chemical composition and evolution of the upper continental crust: Contrasting results from surface samples and shales. Chem. Geol. 1993, 104, 1–37. [Google Scholar] [CrossRef]
- Datta, D.K.; Subramanian, V. Texture and mineralogy of sediments from the Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh and their environmental implications. Environ. Geol. 1997, 30, 181–188. [Google Scholar] [CrossRef]
- Hossain, H.M.Z.; Kawahata, H.; Roser, B.P.; Sampei, Y.; Manaka, T.; Otani, S. Geochemical characteristics of modern river sediments in Myanmar and Thailand: Implications for provenence and weathering. Chem. Erde 2017, 77, 443–458. [Google Scholar] [CrossRef]
- Garver, J.I.; Royce, P.R.; Smick, T.A. Chromium and nickel in shale of the Taconic foreland: A case study for the provenance of fine-grained sediments with an ultramafic source. J. Sedimentary Res. 1996, 66, 100–106. [Google Scholar]
- Gu, X.X.; Liu, J.M.; Zheng, M.H.; Tang, J.X.; Qt, L. Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: Geochemical Evidence. J. Sed. Res. 2002, 72, 393–407. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance and tectonics. Geol. Soc. Am. Spec. Pap. 1993, 285, 21–40. [Google Scholar]
- Roser, B.P.; Korsch, R.J. Geochemical characterization, evo-lution and source of a Mesozoic accretionary wedge: The Torlesse terrane, New Zealand. Geol. Mag. 1999, 136, 493–512. [Google Scholar] [CrossRef]
- Cullers, R.L. The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian–Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim. Cosmochim. Acta 1994, 58, 4955–4972. [Google Scholar] [CrossRef]
- McLennan, S.M. Weathering and global denudation. J. Geol. 1993, 101, 295–303. [Google Scholar] [CrossRef]
- Bhatia, M.R. Plate tectonics and geochemical composition of sandstones. J. Geol. 1983, 91, 611–627. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone mudstone suites using SiO2 and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Cox, R.; Low, D.R.; Cullers, R.L. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Fedo, C.M.; Nesbitt, H.W.; Young, G.M. Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 1995, 23, 921–924. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and diagenesis of weathering profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Fedo, C.M.; Young, G.M. Quartz and feldspar stability, steady and non-steady weathering, and petrogenesis of siliciclastic sands and muds. J. Geol. 1997, 105, 173–191. [Google Scholar] [CrossRef]
- Fedo, C.M.; Young, G.M.; Nesbitt, H.W.; Hanchar, J.M. Potassic and sodic metasomatism in the Southern Province of the Canadian Shield: Evidence from the Paleoproterozoic Serpent Formation Huronian Supergroup, Canada. Precambrian Res. 1997, 84, 17–36. [Google Scholar] [CrossRef]
- Long, X.; Yuan, C.; Sun, M.; Xiao, W.; Wang, Y.; Cai, K.; Jiang, Y. Geochemistry and Nd isotopic composition of the Early Paleozoic flysch sequence in the Chinese Altai, Central Asia: Evidence for a northward-derived mafic source and insight into model ages in an accretionary orogen. Gondwana Res. 2012, 22, 554–566. [Google Scholar] [CrossRef]
- Le Maitre, R.W. The chemical variability of some common igneous rocks. J. Petrol. 1976, 17, 589–637. [Google Scholar] [CrossRef]
- Sharma, R.; Gupta, V.; Arora, B.R.; Sen, K. Petrophysical properties of the Himalayan granitoids: Implication on composition and source. Tectonophysics 2011, 497, 23–33. [Google Scholar] [CrossRef]
- Galy, A.; France-Lanord, C. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology 2001, 29, 23–26. [Google Scholar] [CrossRef]
- Singh, P. Major, trace and REE geochemistry of the Ganga River sediments: Influence of provenance and sedimentary processes. Chem. Geol. 2009, 266, 251–264. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R.; McCulloch, M.T.; Maynard, J.B. Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: Crustal evolution and plate tectonic associations. Geochim. Cosmochim. Acta 1990, 54, 2015–2050. [Google Scholar] [CrossRef]
- McLennan, S.M.; Hemming, S.R.; Taylor, S.R.; Eriksson, K.A. Early Proterozoic crustal evolution: Geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochim. Cosmochim. Acta 1995, 59, 1159–1177. [Google Scholar] [CrossRef]
- Pe-Piper, G.; Triantafyllidis, S.; Piper, D.J.W. Geochemical identification of clastic sediment provenance from known sources of similar geology: The Cretaceous Scotian Basin, Canada. J. Sed. Res. 2008, 78, 595–607. [Google Scholar] [CrossRef]
- Borges, J.B.; Huh, Y.; Moon, S.; Noh, H. Provenance and weathering control on riverbed sediments of the eastern Tibetan Plateau and the Russian Far East. Chem. Geol. 2008, 254, 52–72. [Google Scholar] [CrossRef]
- Braun, J.J.; Viers, J.; Dupré, B.; Polvé, M.; Ndam, J.; Muller, J.P. Solid/liquid REE fractionation in the lateritic system of Goyoum, East Cameroon: The implication for the present dynamics of the soil covers of the humid tropical regions. Geochim. Cosmochim. Acta 1998, 62, 273–299. [Google Scholar] [CrossRef]
- Pan, Y.; Stauffer, M.R. Cerium anomaly and Th/U fractionation in the 1.85 Ga Flin Flon Paleosol: Clues from REE- and U-rich accessory minerals and implications for paleoatmospheric reconstruction. Am. Min. 2000, 85, 898–911. [Google Scholar] [CrossRef]
- Jacobson, A.D.; Blum, J.D.; Chamberlain, C.P.; Craw, D.; Koons, P.O. Climate and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim. Cosmochim. Acta 2003, 37, 29–46. [Google Scholar] [CrossRef]
- Etemad-Saeed, N.; Hosseini-Barzi, M.; Armstrong-Altrin, J.S. Petrography and geochemistry of clastic sedimentary rocks as evidences for provenance of the Lower Cambrian Lalun Formation, Posht-e-Badam block Central Iran. J. Afr. Earth Sci. 2011, 61, 142–159. [Google Scholar] [CrossRef]
- McKay, J.L.; Pedersen, T.F.; Mucci, A. Sedimentary redox conditions in continental margin sediments (N.E. Pacific)—Influence on the accumulation of redox-sensitive trace metals. Chem. Geol. 2007, 238, 180–196. [Google Scholar] [CrossRef]
- Dypvik, H. Geochemical Compositions and Depositional Conditions of Upper Jurassic and Lower Cretaceous Yorkshire Clays, England. Geol. Mag. 1984, 121, 489–504. [Google Scholar] [CrossRef]
- Hatch, J.R.; Leventhal, J.S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem. Geol. 1992, 99, 65–82. [Google Scholar] [CrossRef]
- Madhavaraju, J.; Loser, H.; Lee, Y.I.; Lozano-Santacruz, R.; Pi-Puig, T. Geochemistry of Lower Cretaceous limestones of the Alisitos Formation, Baja California, Mexico: Implications for REE source and paleo-redox conditions. J. Sth. Am. Earth Sci. 2016, 66, 149–165. [Google Scholar] [CrossRef]
- Jones, B.; Manning, D.C. Comparison of geochemical indices used for the interpretation of paleo-redox conditions in ancient mudstones. Chem. Geol. 1994, 111, 111–129. [Google Scholar] [CrossRef]
- Tribovillard, N.; Algeo, T.J.; Lyons, T.; Riboulleau, A. Trace metals as paleo-redox and paleo-productivity proxies: An update. Chem. Geol. 2006, 232, 12–32. [Google Scholar] [CrossRef]
- Mangini, A.; Jung, M.; Laukenmann, S. What do we learn from peaks of uranium and of manganese in deep sea sediments? Mar. Geol. 2001, 177, 63–78. [Google Scholar] [CrossRef]
- Hetzel, A.; Böttcher, M.E.; Wortmann, U.G.; Brumsack, H. Paleo-redox conditions during OAE 2 reflected in Demerara Rise sediment geochemistry (ODP Leg 207). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 273, 302–328. [Google Scholar] [CrossRef]
Oxides. | BS1 | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | BS8 | BS9 | BS10 | BS11 | BS12 | BS13 | BS14 | BS15 | BS16 | BS17 | BS18 | BS19 | BS20 | Min | Max | Average | UCC | PAAS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 75 | 73 | 75 | 70 | 76 | 74 | 71 | 72 | 73 | 76 | 73 | 74 | 72 | 71 | 71 | 69 | 72 | 75 | 72 | 73.4 | 69 | 76 | 72.9 | 66 | 62.8 |
Al2O3 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 | 10 | 10 | 11 | 12 | 13 | 12 | 12 | 11 | 11 | 11 | 11 | 10 | 13 | 11 | 15 | 19 |
Fe2O3 | 4.0 | 4.5 | 3.2 | 4.8 | 3.2 | 3.5 | 4.9 | 2.8 | 4.9 | 3.3 | 4.6 | 4.1 | 4.3 | 3.0 | 4.6 | 5.2 | 4.4 | 3.3 | 4.5 | 3.5 | 2.8 | 5.2 | 4.0 | 4.5 | 6.5 |
MnO | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.1 | 0.1 | 0.1 |
MgO | 1.2 | 1.7 | 1.2 | 2.0 | 1.0 | 1.4 | 2 | 1.9 | 1.6 | 1.1 | 1.4 | 1.6 | 2.0 | 2.0 | 1.9 | 2.1 | 1.7 | 1.3 | 1.7 | 1.6 | 1 | 2.1 | 1.6 | 2.2 | 2.2 |
CaO | 2.6 | 2.9 | 2.9 | 4.6 | 2.3 | 2.4 | 3.1 | 3.0 | 2.7 | 2.7 | 3.0 | 2.6 | 3.0 | 3.7 | 2.2 | 3.0 | 2.5 | 3.0 | 2.7 | 2.3 | 2.2 | 4.6 | 2.9 | 4.2 | 1.3 |
Na2O | 1.8 | 1.9 | 1.9 | 1.9 | 2 | 1.9 | 2.1 | 2.2 | 1.8 | 1.9 | 1.8 | 1.8 | 1.9 | 1.8 | 2.1 | 2.1 | 2.1 | 1.8 | 2.0 | 2.1 | 1.8 | 2.2 | 1.9 | 3.9 | 1.2 |
K2O | 2.8 | 3.0 | 2.3 | 2.6 | 2.5 | 3.3 | 2.9 | 3.3 | 2.4 | 2.4 | 2.9 | 2.7 | 2.5 | 3.5 | 3.3 | 2.8 | 3.0 | 2.6 | 2.9 | 3.2 | 2.3 | 3.5 | 2.8 | 3.4 | 3.7 |
TiO2 | 0.5 | 0.7 | 0.5 | 1.1 | 0.3 | 0.5 | 0.9 | 0.7 | 0.7 | 0.5 | 0.7 | 0.8 | 0.7 | 0.8 | 0.6 | 0.9 | 0.8 | 0.6 | 0.8 | 0.7 | 0.3 | 1.1 | 0.7 | 0.5 | 1.0 |
P2O5 | 0.1 | 0.2 | 0.1 | 0.3 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.1 | 0.1 | 0.3 | 0.2 | 0.2 | 0.2 |
LOI | 1.3 | 0.9 | 0.9 | 1.4 | 1.0 | 1.2 | 1.3 | 1.0 | 1.2 | 1.0 | 1.1 | 1.3 | 1.2 | 1.1 | 1.2 | 1.1 | 1.3 | 1.2 | 1.3 | 1.1 | 0.9 | 1.4 | 1.2 | - | - |
Total | 100 | 100 | 99 | 100 | 99 | 100 | 100 | 99 | 99 | 99 | 99 | 100 | 100 | 99 | 99 | 99 | 100 | 100 | 100 | 99.5 | 99 | 100 | 99 | - | - |
Na2O/K2O | 0.6 | 0.6 | 0.8 | 0.8 | 0.8 | 0.6 | 0.7 | 0.7 | 0.8 | 0.8 | 0.6 | 0.7 | 0.8 | 0.5 | 0.6 | 0.8 | 0.7 | 0.7 | 0.7 | 0.7 | 0.5 | 0.8 | 0.7 | 1.1 | 0.3 |
K2O/Na2O | 1.6 | 1.6 | 1.2 | 1.3 | 1.2 | 1.8 | 1.4 | 1.5 | 1.3 | 1.3 | 1.6 | 1.5 | 1.3 | 1.9 | 1.6 | 1.3 | 1.4 | 1.4 | 1.5 | 1.5 | 1.2 | 1.9 | 1.5 | 0.9 | 3.1 |
SiO2/Al2O3 | 7.4 | 6.6 | 6.8 | 6.3 | 7.3 | 6.6 | 6.2 | 6.0 | 6.9 | 7.4 | 7.0 | 7.0 | 6.3 | 5.7 | 6.1 | 5.9 | 6.4 | 6.8 | 6.5 | 6.4 | 5.7 | 7.4 | 6.6 | 4.3 | 3.3 |
Al2O3/SiO2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.1 | 0.1 | 0.1 | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.1 | 0.2 | 0.2 | 0.2 | 0.3 |
Fe2O3/K2O | 1.4 | 1.5 | 1.4 | 1.9 | 1.3 | 1.1 | 1.7 | 0.9 | 2.0 | 1.4 | 1.6 | 1.6 | 1.7 | 0.9 | 1.4 | 1.9 | 1.5 | 1.3 | 1.5 | 1.1 | 0.9 | 2.0 | 1.4 | 1.3 | 1.8 |
Fe2O3+MgO | 5.1 | 6.2 | 4.5 | 6.8 | 4.2 | 5.0 | 6.9 | 4.7 | 6.6 | 4.4 | 6.0 | 5.7 | 6.3 | 5.0 | 6.5 | 7.3 | 6.1 | 4.6 | 6.1 | 5.1 | 4.2 | 7.3 | 5.6 | 6.7 | 8.7 |
CaO+Na2O | 4.4 | 4.8 | 4.7 | 6.5 | 4.3 | 4.3 | 5.2 | 5.2 | 4.6 | 4.6 | 4.7 | 4.4 | 4.9 | 5.5 | 4.3 | 5.1 | 4.6 | 4.8 | 4.7 | 4.4 | 4.3 | 6.5 | 4.8 | 8.1 | 2.5 |
Al2O3/TiO2 | 21 | 16 | 25 | 10 | 34 | 23 | 13 | 18 | 15 | 23 | 14 | 13 | 18 | 17 | 19 | 14 | 14 | 18 | 13 | 17 | 10 | 34 | 18 | 30 | 18.9 |
Al2O3/Na2O | 5.8 | 5.9 | 5.9 | 5.7 | 5.3 | 6.1 | 5.4 | 5.5 | 5.8 | 5.3 | 5.8 | 5.8 | 6.0 | 7.0 | 5.6 | 5.6 | 5.4 | 6.1 | 5.7 | 5.5 | 5.3 | 7.0 | 5.8 | 3.9 | 15.8 |
Fe2O3/SiO2 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.0 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.1 | 0.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.1 | 0.1 | 0.1 | 0.1 |
CIA | 54 | 54 | 56 | 55 | 53 | 54 | 53 | 53 | 55 | 53 | 54 | 54 | 56 | 56 | 53 | 54 | 53 | 56 | 54 | 53 | 53 | 56 | 54 | 57 | 75 |
PIA | 55 | 56 | 58 | 56 | 54 | 56 | 54 | 54 | 57 | 55 | 55 | 56 | 58 | 60 | 54 | 56 | 54 | 58 | 56 | 54 | 54 | 60 | 56 | 59 | 86 |
ICV | 1.5 | 1.6 | 1.4 | 2.0 | 1.3 | 1.4 | 1.7 | 1.5 | 1.6 | 1.5 | 1.7 | 1.6 | 1.5 | 1.5 | 1.5 | 1.6 | 1.6 | 1.5 | 1.6 | 1.4 | 1.3 | 2.0 | 1.5 | 1.3 | 0.8 |
CIW | 64 | 64 | 64 | 63 | 62 | 65 | 62 | 63 | 64 | 62 | 64 | 64 | 65 | 68 | 63 | 63 | 62 | 65 | 63 | 63 | 62 | 68 | 64 | - | - |
Elements | BS1 | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | BS8 | BS9 | BS10 | BS11 | BS12 | BS13 | BS14 | BS15 | BS16 | BS17 | BS18 | BS19 | BS20 | Min | Max | Average | UCC | PAAS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ba | 341 | 308 | 384 | 308 | 376 | 321 | 365 | 361 | 356 | 378 | 351 | 346 | 372 | 331 | 443 | 360 | 368 | 385 | 353 | 350 | 308 | 443 | 358 | 550 | 650 |
Cr | 65 | 93 | 92 | 102 | 78 | 69 | 66 | 64 | 73 | 94 | 89 | 85 | 72 | 93 | 64 | 94 | 78 | 88 | 91 | 70 | 64 | 102 | 81 | 35 | 110 |
Ga | 18 | 16 | 17 | 17 | 17 | 17 | 17 | 18 | 17 | 17 | 18 | 17 | 16 | 17 | 18 | 16 | 18 | 17 | 17 | 17 | 16 | 18 | 17 | 17 | 17 |
Nb | 8 | 6 | 7 | 6 | 7 | 7 | 7 | 8 | 7 | 7 | 8 | 7 | 6 | 7 | 8 | 6 | 8 | 7 | 7 | 7 | 6 | 8 | 7 | 25 | 19 |
Ni | 27 | 3 | 20 | 6 | 20 | 12 | 14 | 21 | 22 | 20 | 28 | 17 | 7 | 15 | 28 | 8 | 20 | 18 | 16 | 17 | 3 | 28 | 17 | 20 | 55 |
Co | 9 | 15 | 10 | 12 | 8 | 11 | 9 | 7 | 13 | 9 | 8 | 8 | 10 | 9 | 8 | 9 | 7 | 12 | 9 | 9 | 7 | 15 | 10 | 10 | 23 |
Pb | 24 | 4 | 16 | 6 | 18 | 13 | 13 | 20 | 17 | 15 | 26 | 14 | 5 | 11 | 21 | 3 | 19 | 16 | 13 | 15 | 3 | 26 | 14 | 20 | 20 |
Rb | 135 | 42 | 99 | 6 | 23 | 143 | 133 | 86 | 157 | 56 | 150 | 93 | 21 | 33 | 96 | 49 | 131 | 55 | 105 | 12 | 6 | 157 | 81 | 112 | 160 |
Sc | 17 | 17 | 17 | 18 | 17 | 17 | 18 | 17 | 17 | 17 | 18 | 17 | 17 | 17 | 18 | 17 | 17 | 17 | 17 | 17 | 17 | 18 | 17 | 11 | 16 |
Sr | 281 | 205 | 257 | 236 | 268 | 247 | 258 | 274 | 266 | 254 | 286 | 234 | 209 | 253 | 281 | 220 | 273 | 266 | 253 | 262 | 205 | 286 | 254 | 350 | 200 |
V | 88 | 86 | 85 | 104 | 79 | 88 | 107 | 90 | 94 | 88 | 92 | 93 | 92 | 93 | 91 | 96 | 94 | 89 | 98 | 91 | 79 | 107 | 92 | 60 | 150 |
Y | 14 | 13 | 14 | 14 | 14 | 13 | 14 | 15 | 14 | 14 | 15 | 14 | 13 | 14 | 15 | 13 | 14 | 14 | 14 | 14 | 13 | 15 | 14 | 22 | 27 |
Zr | 166 | 170 | 162 | 215 | 162 | 162 | 217 | 195 | 196 | 165 | 179 | 211 | 173 | 186 | 182 | 192 | 198 | 179 | 218 | 190 | 162 | 218 | 186 | 190 | 210 |
Hf | 3.30 | 3.36 | 3.30 | 3.15 | 3.37 | 3.29 | 3.18 | 3.25 | 3.19 | 3.29 | 3.35 | 3.29 | 3.28 | 3.27 | 3.34 | 3.25 | 3.24 | 3.27 | 3.27 | 3.32 | 3.15 | 3.37 | 3.28 | 5.80 | 5.00 |
Ta | 0.72 | 0.71 | 0.70 | 0.64 | 0.72 | 0.72 | 0.64 | 0.69 | 0.67 | 0.70 | 0.72 | 0.68 | 0.69 | 0.69 | 0.71 | 0.68 | 0.68 | 0.70 | 0.66 | 0.70 | 0.64 | 0.72 | 0.69 | 2.20 | 1.28 |
Th | 8.88 | 8.85 | 8.82 | 8.59 | 8.81 | 12.30 | 8.60 | 8.71 | 8.71 | 12.10 | 8.91 | 8.76 | 8.79 | 12.00 | 8.80 | 8.81 | 8.72 | 8.77 | 8.75 | 12.10 | 8.59 | 12.30 | 9.44 | 10.70 | 14.6 |
U | 1.92 | 1.93 | 1.90 | 1.81 | 1.95 | 2.25 | 1.80 | 1.88 | 1.85 | 2.27 | 1.92 | 1.86 | 1.90 | 2.23 | 1.91 | 1.86 | 1.86 | 1.90 | 1.85 | 2.29 | 1.80 | 2.29 | 1.96 | 2.80 | 3.10 |
Rb/Sr | 0.48 | 0.20 | 0.39 | 0.03 | 0.09 | 0.58 | 0.52 | 0.31 | 0.59 | 0.22 | 0.52 | 0.40 | 0.10 | 0.13 | 0.34 | 0.22 | 0.48 | 0.21 | 0.42 | 0.05 | 0.03 | 0.59 | 0.31 | 0.32 | 0.80 |
Th/Sc | 0.52 | 0.52 | 0.52 | 0.48 | 0.52 | 0.72 | 0.48 | 0.51 | 0.51 | 0.71 | 0.50 | 0.52 | 0.52 | 0.71 | 0.49 | 0.52 | 0.51 | 0.52 | 0.51 | 0.71 | 0.48 | 0.72 | 0.55 | 0.97 | 0.91 |
Zr/Sc | 9.76 | 10.00 | 9.53 | 11.90 | 9.53 | 9.53 | 12.1 | 11.5 | 11.5 | 9.71 | 9.94 | 12.4 | 10.2 | 10.9 | 10.1 | 11.3 | 11.7 | 10.5 | 12.8 | 11.2 | 9.53 | 12.8 | 10.8 | 17.3 | 13.1 |
Cr/Th | 7.32 | 10.50 | 10.40 | 11.90 | 8.85 | 5.61 | 7.67 | 7.35 | 8.38 | 7.75 | 9.99 | 9.70 | 8.19 | 7.73 | 7.27 | 10.7 | 8.94 | 10.00 | 10.40 | 5.79 | 5.61 | 11.90 | 8.72 | 3.27 | 7.50 |
Th/Co | 0.99 | 0.59 | 0.88 | 0.72 | 1.10 | 1.12 | 0.96 | 1.24 | 0.67 | 1.35 | 1.11 | 1.10 | 0.88 | 1.34 | 1.10 | 0.98 | 1.25 | 0.73 | 0.97 | 1.34 | 0.59 | 1.35 | 1.02 | 1.07 | 0.63 |
Sc/Th | 1.91 | 1.92 | 1.93 | 2.10 | 1.93 | 1.38 | 2.09 | 1.95 | 1.95 | 1.40 | 2.02 | 1.94 | 1.93 | 1.41 | 2.05 | 1.93 | 1.95 | 1.94 | 1.94 | 1.41 | 1.38 | 2.10 | 1.85 | 1.00 | 1.10 |
Ni/Co | 3.00 | 0.20 | 2.00 | 0.50 | 2.50 | 1.09 | 1.56 | 3.00 | 1.69 | 2.22 | 3.50 | 2.13 | 0.70 | 1.67 | 3.50 | 0.89 | 2.86 | 1.50 | 1.78 | 1.89 | 0.20 | 3.50 | 1.91 | 2.00 | 2.39 |
Th/U | 4.63 | 4.59 | 4.64 | 4.75 | 4.52 | 5.46 | 4.78 | 4.63 | 4.71 | 5.34 | 4.64 | 4.71 | 4.63 | 5.39 | 4.61 | 4.74 | 4.69 | 4.62 | 4.73 | 5.28 | 4.77 | 5.37 | 4.82 | 3.82 | 4.71 |
U/Th | 0.22 | 0.22 | 0.22 | 0.21 | 0.22 | 0.18 | 0.21 | 0.22 | 0.21 | 0.19 | 0.22 | 0.21 | 0.22 | 0.19 | 0.22 | 0.21 | 0.21 | 0.22 | 0.21 | 0.19 | 0.21 | 0.19 | 0.21 | 0.26 | 0.21 |
V/Cr | 1.35 | 0.92 | 0.92 | 1.02 | 1.01 | 1.28 | 1.62 | 1.41 | 1.29 | 0.94 | 1.03 | 1.09 | 1.28 | 1.00 | 1.42 | 1.02 | 1.21 | 1.01 | 1.08 | 1.30 | 1.23 | 1.05 | 1.13 | 1.71 | 1.36 |
V/Sc | 5.18 | 5.06 | 5.00 | 5.78 | 4.65 | 5.18 | 5.94 | 5.29 | 5.53 | 5.18 | 5.11 | 5.47 | 5.41 | 5.47 | 5.06 | 5.65 | 5.53 | 5.24 | 5.76 | 5.35 | 4.65 | 5.94 | 5.34 | 5.45 | 9.38 |
Elements | BS1 | BS2 | BS3 | BS4 | BS5 | BS6 | BS7 | BS8 | BS9 | BS10 | BS11 | BS12 | BS13 | BS14 | BS15 | BS16 | BS17 | BS18 | BS19 | BS20 | Min | Max | Average | UCC | PAAS |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
La | 25.8 | 26.6 | 25.7 | 27.4 | 25.8 | 26.6 | 28.3 | 26.8 | 26.9 | 25.9 | 25.8 | 26.8 | 26.2 | 26.2 | 26.4 | 26.9 | 26.5 | 26.0 | 26.6 | 26.9 | 25.7 | 28.3 | 26.5 | 30.0 | 38.2 |
Ce | 49.8 | 50.2 | 49.4 | 54.1 | 47.9 | 57.5 | 53.0 | 50.0 | 50.3 | 56.5 | 50.4 | 50.9 | 51.5 | 57.6 | 50.7 | 50.8 | 50.2 | 49.7 | 50.3 | 57.5 | 47.9 | 57.6 | 51.9 | 64.0 | 79.6 |
Pr | 6.09 | 6.15 | 5.99 | 6.13 | 5.99 | 6.03 | 6.15 | 6.05 | 6.06 | 6.08 | 6.11 | 6.08 | 6.06 | 6.08 | 6.06 | 6.12 | 6.04 | 6.08 | 6.01 | 6.04 | 5.99 | 6.15 | 6.07 | 7.10 | 8.83 |
Nd | 20.3 | 20.3 | 19.9 | 20.7 | 19.5 | 20.1 | 20.5 | 20.1 | 20.4 | 20.2 | 20.1 | 20.5 | 20.2 | 20.7 | 20.3 | 20.3 | 20.6 | 20.0 | 20.4 | 20.1 | 19.5 | 20.7 | 20.3 | 26.0 | 33.9 |
Sm | 3.97 | 4.01 | 3.94 | 3.98 | 3.95 | 4.02 | 3.95 | 3.95 | 4.03 | 4.02 | 4.03 | 3.97 | 4.01 | 3.97 | 3.98 | 4.03 | 3.98 | 3.95 | 3.98 | 3.98 | 3.94 | 4.03 | 3.99 | 4.50 | 5.55 |
Eu | 0.67 | 0.69 | 0.68 | 0.68 | 0.67 | 0.83 | 0.69 | 0.68 | 0.69 | 0.83 | 0.69 | 0.69 | 0.70 | 0.84 | 0.69 | 0.68 | 0.69 | 0.68 | 0.68 | 0.83 | 0.67 | 0.84 | 0.71 | 0.88 | 1.08 |
Gd | 3.83 | 4.03 | 3.75 | 4.02 | 3.75 | 3.88 | 4.02 | 3.84 | 3.81 | 3.87 | 3.89 | 3.89 | 4.00 | 3.98 | 3.90 | 4.01 | 3.82 | 3.83 | 3.87 | 3.93 | 3.75 | 4.03 | 3.90 | 3.80 | 4.66 |
Tb | 0.43 | 0.44 | 0.43 | 0.46 | 0.42 | 0.44 | 0.46 | 0.44 | 0.45 | 0.44 | 0.44 | 0.44 | 0.45 | 0.45 | 0.44 | 0.45 | 0.44 | 0.44 | 0.44 | 0.45 | 0.42 | 0.46 | 0.44 | 0.64 | 0.77 |
Dy | 2.74 | 2.90 | 2.68 | 3.37 | 2.53 | 2.83 | 3.36 | 2.86 | 3.00 | 2.83 | 2.87 | 2.93 | 2.90 | 2.97 | 2.87 | 3.04 | 2.92 | 2.79 | 3.02 | 3.00 | 2.53 | 3.37 | 2.92 | 3.50 | 4.68 |
Ho | 0.62 | 0.63 | 0.62 | 0.62 | 0.61 | 0.66 | 0.62 | 0.61 | 0.62 | 0.61 | 0.63 | 0.62 | 0.62 | 0.63 | 0.62 | 0.63 | 0.62 | 0.62 | 0.62 | 0.62 | 0.61 | 0.66 | 0.62 | 0.80 | 0.99 |
Er | 1.35 | 1.40 | 1.34 | 1.49 | 1.27 | 1.36 | 1.50 | 1.38 | 1.40 | 1.37 | 1.39 | 1.40 | 1.43 | 1.42 | 1.42 | 1.45 | 1.40 | 1.35 | 1.42 | 1.43 | 1.27 | 1.50 | 1.40 | 2.30 | 2.85 |
Tm | 0.20 | 0.20 | 0.20 | 0.19 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.20 | 0.19 | 0.19 | 0.18 | 0.20 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.18 | 0.20 | 0.19 | 0.33 | 0.41 |
Yb | 1.54 | 1.50 | 1.48 | 1.23 | 1.50 | 1.49 | 1.24 | 1.42 | 1.34 | 1.46 | 1.50 | 1.37 | 1.41 | 1.40 | 1.47 | 1.37 | 1.36 | 1.49 | 1.34 | 1.41 | 1.23 | 1.54 | 1.42 | 2.20 | 2.82 |
Lu | 0.21 | 0.20 | 0.20 | 0.19 | 0.21 | 0.20 | 0.19 | 0.20 | 0.20 | 0.20 | 0.21 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.19 | 0.21 | 0.20 | 0.32 | 0.43 |
∑REE | 118 | 119 | 116 | 125 | 114 | 126 | 124 | 119 | 119 | 124 | 118 | 120 | 120 | 127 | 119 | 120 | 119 | 117 | 119 | 127 | 114 | 130 | 121 | 146 | 185 |
∑LREE | 106 | 107 | 105 | 112 | 103 | 114 | 112 | 107 | 108 | 113 | 106 | 108 | 108 | 115 | 107 | 108 | 107 | 106 | 107 | 115 | 103 | 117 | 109 | 132 | 166 |
∑HREE | 11.6 | 12.0 | 11.4 | 12.3 | 11.2 | 11.9 | 12.3 | 11.6 | 11.7 | 11.8 | 11.8 | 11.7 | 11.9 | 12.1 | 11.8 | 12 | 11.6 | 11.6 | 11.8 | 12.1 | 10.9 | 12.8 | 11.8 | 14.8 | 18.7 |
∑(LREE/HREE) | 9.14 | 8.95 | 9.22 | 9.17 | 9.24 | 9.62 | 9.11 | 9.21 | 9.20 | 9.54 | 9.01 | 9.23 | 9.07 | 9.49 | 9.10 | 9.00 | 9.22 | 9.12 | 9.10 | 9.49 | 9.49 | 9.12 | 9.21 | 8.91 | 8.89 |
Eu/Eu* | 0.58 | 0.58 | 0.60 | 0.57 | 0.59 | 0.71 | 0.58 | 0.59 | 0.60 | 0.71 | 0.59 | 0.59 | 0.59 | 0.71 | 0.59 | 0.57 | 0.60 | 0.59 | 0.59 | 0.71 | 0.57 | 0.71 | 0.61 | 0.63 | - |
LaN/YbN | 11.3 | 12.0 | 11.7 | 15.0 | 11.6 | 12.0 | 15.4 | 12.7 | 13.6 | 12.0 | 11.6 | 13.2 | 12.5 | 12.6 | 12.1 | 13.2 | 13.1 | 11.8 | 13.4 | 12.8 | 11.3 | 15.4 | 12.7 | - | - |
LaN/SmN | 4.09 | 4.18 | 4.10 | 4.32 | 4.11 | 4.16 | 4.50 | 4.27 | 4.20 | 4.05 | 4.03 | 4.25 | 4.11 | 4.15 | 4.17 | 4.20 | 4.18 | 4.13 | 4.20 | 4.25 | 4.03 | 4.50 | 4.18 | - | - |
CeN/YbN | 8.36 | 8.65 | 8.63 | 11.40 | 8.26 | 9.98 | 11.10 | 9.12 | 9.71 | 10.0 | 8.69 | 9.61 | 9.44 | 10.7 | 8.92 | 9.60 | 9.56 | 8.63 | 9.70 | 10.6 | 8.26 | 11.40 | 9.52 | - | - |
CeN/SmN | 3.03 | 3.02 | 3.02 | 3.28 | 2.93 | 3.45 | 3.24 | 3.06 | 3.01 | 3.39 | 3.02 | 3.09 | 3.10 | 3.50 | 3.07 | 3.04 | 3.05 | 3.04 | 3.05 | 3.49 | 2.93 | 3.50 | 3.14 | - | - |
EuN/YbN | 1.24 | 1.31 | 1.31 | 1.57 | 1.27 | 1.58 | 1.58 | 1.36 | 1.46 | 1.62 | 1.31 | 1.43 | 1.41 | 1.71 | 1.33 | 1.41 | 1.44 | 1.30 | 1.44 | 1.67 | 1.24 | 1.71 | 1.44 | - | - |
GdN/YbN | 1.64 | 1.79 | 1.66 | 2.18 | 1.64 | 1.72 | 2.16 | 1.78 | 1.87 | 1.75 | 1.72 | 1.88 | 1.89 | 1.89 | 1.76 | 1.95 | 1.85 | 1.69 | 1.91 | 1.85 | 1.64 | 2.18 | 1.83 | - | - |
La/Co | 2.87 | 1.77 | 2.57 | 2.28 | 3.23 | 2.42 | 3.14 | 3.83 | 2.07 | 2.88 | 3.23 | 3.35 | 2.62 | 2.91 | 3.30 | 2.99 | 3.78 | 2.16 | 2.95 | 2.98 | 1.77 | 3.83 | 2.87 | 3.00 | 1.70 |
La/Sc | 1.52 | 1.57 | 1.51 | 1.52 | 1.52 | 1.57 | 1.57 | 1.58 | 1.58 | 1.52 | 1.43 | 1.58 | 1.54 | 1.54 | 1.47 | 1.58 | 1.56 | 1.53 | 1.56 | 1.58 | 1.43 | 1.58 | 1.54 | 2.70 | 2.40 |
La/Th | 2.90 | 3.01 | 2.91 | 3.19 | 2.93 | 2.17 | 3.29 | 3.08 | 3.09 | 2.14 | 2.90 | 3.06 | 2.98 | 2.18 | 3.00 | 3.05 | 3.04 | 2.96 | 3.03 | 2.22 | 2.99 | 2.30 | 2.81 | 2.80 | 2.62 |
Oxide/ Element | SiO2 | Al2O3 | TiO2 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | Ba | Sr | Cr | Ni | Sc | Co | Nb | Y | Zr | Pb | Rb | V | Hf | Th | U |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | -- | - |
Al2O3 | −0.67 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
TiO2 | −0.85 | 0.33 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Fe2O3 | −0.58 | −0.10 | 0.63 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
MnO | −0.84 | 0.29 | 0.94 | 0.67 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
MgO | −0.95 | 0.77 | 0.78 | 0.47 | 0.75 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
CaO | −0.54 | 0.24 | 0.63 | 0.13 | 0.67 | 0.47 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Na2O | −0.38 | 0.48 | 0.20 | 0.11 | 0.16 | 0.42 | −0.19 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
K2O | −0.41 | 0.65 | 0.17 | −0.13 | 0.12 | 0.42 | −0.08 | 0.29 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
P2O5 | −0.86 | 0.34 | 0.95 | 0.69 | 0.92 | 0.81 | 0.61 | 0.15 | 0.14 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Ba | 0.16 | 0.06 | −0.34 | −0.07 | −0.38 | −0.12 | −0.49 | 0.36 | −0.15 | −0.41 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - | -- |
Sr | 0.28 | −0.21 | −0.28 | −0.26 | −0.32 | −0.41 | −0.31 | 0.05 | 0.18 | −0.45 | 0.42 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Cr | −0.09 | −0.11 | 0.27 | 0.07 | 0.22 | −0.01 | 0.56 | −0.35 | −0.34 | 0.27 | −0.33 | −0.41 | 1.00 | - | - | - | - | - | - | - | - | - | - | - | - |
Ni | 0.41 | −0.34 | −0.41 | −0.22 | −0.45 | −0.49 | −0.47 | −0.07 | 0.04 | −0.53 | 0.55 | 0.91 | −0.40 | 1.00 | - | - | - | - | - | - | - | - | - | - | - |
Sc | −0.44 | 0.00 | 0.45 | 0.48 | 0.47 | 0.31 | 0.33 | 0.16 | 0.11 | 0.40 | 0.15 | 0.25 | −0.03 | 0.15 | 1.00 | - | - | - | - | - | - | - | - | - | - |
Co | −0.02 | −0.15 | 0.08 | 0.22 | 0.19 | 0.03 | 0.30 | −0.43 | −0.26 | 0.18 | −0.44 | −0.50 | 0.31 | −0.54 | −0.09 | 1.00 | - | - | - | - | - | - | - | - | - |
Nb | 0.26 | −0.13 | −0.28 | −0.25 | −0.33 | −0.32 | −0.44 | 0.09 | 0.36 | −0.43 | 0.40 | 0.90 | −0.51 | 0.90 | 0.15 | −0.62 | 1.00 | - | - | - | - | - | - | - | - |
Y | 0.05 | −0.07 | 0.00 | −0.17 | −0.11 | −0.12 | −0.05 | 0.16 | 0.18 | −0.16 | 0.44 | 0.81 | −0.21 | 0.78 | 0.47 | −0.52 | 0.77 | 1.00 | - | - | - | - | - | - | - |
Zr | −0.63 | 0.23 | 0.87 | 0.48 | 0.72 | 0.60 | 0.38 | 0.32 | 0.11 | 0.79 | −0.15 | −0.05 | 0.08 | −0.17 | 0.33 | −0.14 | −0.06 | 0.20 | 1.00 | - | - | - | - | - | - |
Pb | 0.46 | −0.38 | −0.41 | −0.27 | −0.45 | −0.55 | −0.45 | −0.08 | 0.11 | −0.54 | 0.40 | 0.94 | −0.45 | 0.96 | 0.17 | −0.51 | 0.94 | 0.78 | −0.17 | 1.00 | - | - | - | - | - |
Rb | 0.10 | −0.29 | −0.05 | 0.26 | −0.06 | −0.19 | −0.36 | −0.15 | 0.10 | −0.08 | 0.10 | 0.50 | −0.39 | 0.54 | 0.15 | −0.15 | 0.61 | 0.28 | 0.08 | 0.59 | 1.00 | - | - | - | - |
V | −0.76 | 0.26 | 0.90 | 0.62 | 0.88 | 0.69 | 0.55 | 0.23 | 0.09 | 0.84 | −0.19 | −0.13 | 0.08 | −0.28 | 0.54 | −0.01 | −0.18 | 0.04 | 0.85 | −0.29 | 0.12 | 1.00 | - | - | - |
Hf | 0.54 | −0.18 | −0.67 | −0.34 | −0.70 | −0.50 | −0.60 | −0.15 | 0.15 | −0.62 | 0.22 | 0.09 | −0.06 | 0.27 | −0.20 | −0.14 | 0.21 | 0.06 | −0.66 | 0.28 | −0.12 | −0.79 | 1.00 | - | - |
Th | 0.19 | 0.16 | −0.27 | −0.50 | −0.24 | −0.15 | −0.10 | −0.14 | 0.37 | −0.30 | −0.21 | 0.00 | 0.02 | −0.05 | −0.27 | −0.02 | −0.03 | −0.18 | −0.32 | −0.06 | −0.19 | −0.20 | 0.18 | 1.00 | - |
U | 0.31 | 0.11 | −0.41 | −0.57 | −0.38 | −0.26 | −0.20 | −0.15 | 0.34 | −0.44 | −0.15 | 0.04 | −0.01 | 0.01 | −0.31 | −0.03 | 0.02 | −0.15 | −0.45 | 0.01 | −0.24 | −0.36 | 0.34 | 0.98 | 1.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.A.; Das, S.C.; Pownceby, M.I.; Tardio, J.; Alam, M.S.; Zaman, M.N. Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals 2020, 10, 813. https://doi.org/10.3390/min10090813
Rahman MA, Das SC, Pownceby MI, Tardio J, Alam MS, Zaman MN. Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals. 2020; 10(9):813. https://doi.org/10.3390/min10090813
Chicago/Turabian StyleRahman, Md Aminur, Sudeb Chandra Das, Mark I. Pownceby, James Tardio, Md Sha Alam, and Mohammad Nazim Zaman. 2020. "Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment" Minerals 10, no. 9: 813. https://doi.org/10.3390/min10090813
APA StyleRahman, M. A., Das, S. C., Pownceby, M. I., Tardio, J., Alam, M. S., & Zaman, M. N. (2020). Geochemistry of Recent Brahmaputra River Sediments: Provenance, Tectonics, Source Area Weathering and Depositional Environment. Minerals, 10(9), 813. https://doi.org/10.3390/min10090813