The Use of Limestones Built of Carbonate Phases with Increased Mg Content in Processes of Flue Gas Desulfurization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results of Study
3.1. Carbonate Minerals in Limestones
3.1.1. The Results of the X-ray Diffraction
3.1.2. The Results of the Thermal Analysis
3.1.3. The Results of the Fourier Transform Infrared Spectroscopy (FTIR)
3.1.4. The Results of X-ray Microanalysis (Microprobe Measurements)
3.2. Limestone Built of Carbonate Minerals with Increased Mg Content as a Sorbent in Flue Gas Desulfurization
3.2.1. Results of Sorption Tests
3.2.2. Application of Limestones Built of Carbonates with Increased Mg Content as a Sorbent in Flue Gas Desulfurization
4. Discussion
5. Conclusions
- The research results confirmed the presence of four carbonate minerals in the Triassic limestones of the Opole Silesia in Poland. Some of them present increased Mg contents. They are low magnesium calcite, (Low-Mg calcite), high magnesium calcite (High-Mg calcite), dolomite, mainly ordered dolomite and huntite. The minerals phases are characterized by various magnesium contents.
- The influence of the magnesium content on the sorption properties of limestones was determined based on the data obtained as a result of the sorption properties research.
- The results of the research showed that an increased content of magnesium in the sorbent has a positive effect on the technological process of flue gas desulfurization using the dry method, especially in the case of desulfurization with the application of Fluidized Bed Reactors.
- The positive influence of magnesium presence in sorbent on the desulfurization process is connected with the decarbonization of carbonate phases with magnesium that takes place at temperatures that are lower than the decarbonization temperature of low magnesium calcite.
- In the process of decarbonization, it is easier to use a calcium carbonate containing the substitutions of magnesium ions. It starts and runs at lower temperatures because the structure of a solid solution containing magnesium ions, with a smaller ion radius than calcium ions, is unstable and decomposition of these phases runs easier and faster.
- The results of this research indicate that the decomposition of dolomite runs earlier and faster than the decomposition of low-Mg calcite. Therefore, because of magnesium’s presence, the decomposition of high-Mg calcite and huntite will run similarly to the decomposition of dolomite, i.e., earlier and faster than the decomposition of low-Mg calcite.
- Due to the faster decarbonization of carbonates with magnesium, the desulfurization process will start earlier and at lower temperatures. It will cause an increase in the efficiency of this process.
- However, the application of a sorbent including carbonate minerals with an increased Mg content could cause the flue gas desulfurization to be much more energy consuming. Moreover, the use of this type of sorbent may cause an increase in the costs of conducting desulfurization because of the possible severe corrosion of the equipment used in the applied system. However, the use of an appropriate technology may limit the negative impact of using limestone containing carbonates rich in magnesium as a sorbent in the system of flue gas desulfurization.
- Moreover, the presence of periclase in the post-reaction product may restrict the use of this product in some branches of the industry. However, the periclase is an inert material that does not react with other substances, and it is not dangerous for the environment. Therefore, the proper preparation of the post-reaction product including periclase will allow to use this product.
- To sum up, on the basis of the research results and their analysis, it should be stated that limestones containing carbonate minerals with an increased Mg content will be a better sorbent than “pure” limestone, which is built mainly of low magnesium calcite.
Funding
Data Availability Statement
Conflicts of Interest
References
- Althoff, P.L. Structural refinements of dolomite and a magnesian calcite and implications for dolomite formation in the marine environment. Am. Mineral. 1977, 62, 772–783. Available online: https://rruff.info/doclib/am/vol62/AM62_772.pdf (accessed on 26 July 2021).
- Atay, H.Y.; Çelik, E. Use of Turkish huntite/hydromagnesite mineral in plastic materials as a flame retardant. Polym. Compos. 2010, 31, 1691–1700. [Google Scholar] [CrossRef]
- Bertram, M.A.; Mackenzie, F.T.; Bishop, F.C.; Bischoff, W.D. Influence of temperature on the stability of magnesian calcite. Am. Mineral. 1991, 76, 1889–1896. [Google Scholar]
- Boggs, S., Jr. Petrology of Sedimentary Rocks, 2nd ed.; Cambridge University Press: Cambridge, UK, 2010; pp. 313–457. Available online: http://www.minsocam.org/ammin/AM76/AM76_1889.pdf (accessed on 26 July 2021).
- Böttcher, M.E.; Gehlken, P.L.; Fernández-González, Á.; Prieto, M. Characterization of synthetic BaCO3–SrCO3 (witherite-strontianite) solid-solutions by Fourier transform infrared spectroscopy. Eur. J. Mineral. 1997, 9, 519–528. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Gehlken, P.L.; Steele, F.D. Characterization of inorganic and biogenic magnesian calcites by Fourier Transform infrared spectroscopy. Solid State Ion. 1997, 101–103, 1379–1385. [Google Scholar] [CrossRef]
- Böttcher, M.E.; Dietzel, M. Metal-ion partitioning during low-temperature precipitation and dissolution of anhydrous carbonates and sulphates. In Ion Partitioning in Ambient-Temperature Aqueous Systems; GeoScienceWorld: McLean, VA, USA, 2010; Volume 10, pp. 139–187. [Google Scholar] [CrossRef]
- Cole, W.F.; Lancucki, C.J. Huntite from Deer Park, Victoria, Australia. Am. Mineral. 1975, 60, 1130–1131. [Google Scholar]
- Deelman, J.C. Low-Temperature Formation of Dolomite and Magnesite. 2011. Available online: http://www.jcdeelman.demon.nl/dolomite/files/13_Chapter6.pdf (accessed on 26 July 2021).
- Dollase, W.A.; Reeder, R.J. Crystal structure refinement of huntite, CaMg3[CO3]4, with X-ray powder data. Am. Mineral. 1986, 71, 163–166. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.561.927&rep=rep1&type=pdf (accessed on 26 July 2021).
- Faust, G.T. Huntite, Mg3Ca(CO3)4, a new mineral. Am. Mineral. 1953, 38, 4–23. Available online: https://rruff-2.geo.arizona.edu/uploads/AM38_4.pdf (accessed on 26 July 2021).
- Graf, D.L.; Goldsmith, J.R. Some hydrothermal syntheses of dolomite and protodolomite. Benchmark Pap. Geol. 1982, 65, 70–84. Available online: https://www.jstor.org/stable/30060650 (accessed on 26 July 2021). [CrossRef]
- Kralj, D.; Kontrec, J.; Brecĕvć, L.; Falini, G.; Nöthig-Laslo, V. Effect of inorganic anions on the morphology and structure of magnesium calcite- chemistry. Chem. Eur. J. 2004, 10, 1647–1656. [Google Scholar] [CrossRef]
- Morse, J.W.; Andersson, A.J.; Mackenzie, F.T. Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and “ocean acidification”: Role of high Mg-calcites. Geochim. Cosmochim. Acta 2006, 70, 5814–5830. [Google Scholar] [CrossRef]
- Nash, M.C.; Troitzsch, U.; Opdyke, B.N.; Trafford, J.M.; Russell, B.D.; Kline, D.I. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications. Biogeosciences 2011, 8, 3331–33340. [Google Scholar] [CrossRef] [Green Version]
- Nürnberg, D.; Bijma, J.; Hemleben, C. Assessing the reability of magnesium in foraminiferal calcite as a proxy for water mass temperatures. Geochim. Cosmochim. Acta 1996, 60, 803–814. [Google Scholar] [CrossRef] [Green Version]
- Paquette, J.; Reeder, R.J. Single-crystal X-ray structure refinements of two biogenic magnesian calcite crystals. Am. Mineral. 1990, 75, 1151–1158. [Google Scholar]
- Stanienda, K. Identification of the carbonate phases in the Karchowice and Diplopora Beds (Muschelkalk Sediments) from the Lower Silesia. Sci. J. Sil. Univ. Technol. 2005, 269, 149–157. [Google Scholar]
- Stanienda, K. Carbonates in the Triassic rocks from the area of Tarnów Opolski. Miner. Resour. Manag. 2006, 22, 243–251. [Google Scholar]
- Stanienda, K. Effects of Dolomitization Processes in the Triassic Limestone of Tarnów Opolski Deposit; Silesian University of Technology Press: Gliwice, Poland, 2011; ISBN 978-83-7335-872-0. [Google Scholar]
- Stanienda, K. Diagenesis of the Triassic Limestone from the Opole Silesia in the Aspect of Magnesian Calcite Presence; Silesian University of Technology Press: Gliwice, Poland, 2013; ISBN 978-83-7880-071-2. [Google Scholar]
- Stanienda, K. Possibility of huntite presence in the Triassic limestones of Opole Silesia. Miner. Resour. Manag. 2013, 29, 79–98. [Google Scholar] [CrossRef] [Green Version]
- Stanienda, K. Mineral phases in carbonate rocks of the Gogolin Beds from the area of Opole Silesia. Miner. Resour. Manag. 2014, 30, 17–42. [Google Scholar] [CrossRef] [Green Version]
- Stanienda, K. Carbonate phases rich in magnesium in the Triassic limestones of the East part of Germanic Basin. Carbonates Evaporites 2016, 31, 387–405. [Google Scholar] [CrossRef] [Green Version]
- Stanienda, K. Mineral phases in carbonate rocks of the Górażdże Beds from the area of Opole Silesia. Miner. Resour. Manag. 2016, 32, 67–92. [Google Scholar] [CrossRef] [Green Version]
- Stanienda-Pilecki, K. Carbonate minerals with magnesium in Triassic Terebratula limestone in the term of limestone with magnesium application as a sorbent in desulfurization of flue gases. Arch. Min. Sci. 2017, 62, 459–482. [Google Scholar] [CrossRef] [Green Version]
- Stanienda-Pilecki, K. Magnesium calcite in Muschelkalk limestones of the Polish part of the Germanic Basin. Carbonates Evaporites 2018, 33, 801–821. [Google Scholar] [CrossRef] [Green Version]
- Stanienda-Pilecki, K. The importance of Fourier-Transform Infrared Spectroscopy in the identification of carbonate phases differentiated in magnesium content. Spectroscopy 2019, 34, 32–42. Available online: https://www.spectroscopyonline.com/view/spec 0619-pilecki (accessed on 26 July 2021).
- Titiloye, J.O.; De Leeuw, N.H.; Parker, S.C. Atomistic simulation of the differences between calcite and dolomite surfaces. Geochim. Cosmochim. Acta 1998, 62, 2637–2641. [Google Scholar] [CrossRef]
- Tsipursky, S.J.; Buseck, P.R. Structure of magnesian calcite from sea urchins. Am. Mineral. 1993, 78, 775–781. Available online: http://www.minsocam.org/ammin/am78/am78_775.pdf (accessed on 26 July 2021).
- Yavuz, F.; Kirikoğlu, M.S.; Özden, G. The occurrence and geochem istry of huntite from Neogene lacustrine sediments of the Yalvaç-Yarıkkaya Basin, Isparta, Turkey. Neues Jahrb. Fur Mineral. Abh. 2006, 182/2, 201–212. [Google Scholar] [CrossRef]
- Zahng, Y.; Dave, R.A. Influence of Mg2+ on the kinetics of calcite crystal morphology. Chem. Geol. 2000, 163, 129–138. [Google Scholar] [CrossRef]
- Niedźwiedzki, R. Lithostratigraphy of the Górażdże and the Dziewkowice formations in Opole Silesia. Geol. Mineral. Stud. U. Wr. LXXI 2000, 71, 1–72. [Google Scholar]
- Szulc, J. International workshop- field seminar the muschelkalk. In Sedimentary Environments, Facies and Diagenesis; Excursion Guidebook and Abstracts; Institute of Geological Science Publishing House of Jagiellonian University: Cracow, Poland, 1990; pp. 1–32. [Google Scholar]
- Szulc, J. Middle Triassic evolution of the Northern Peri-Tethys area is influenced by early opening of the Tethys Ocean. Ann. Soc. Geol. Pol. 2000, 70, 1–48. Available online: https://geojournals.pgi.gov.pl/asgp/article/view/12348/10822 (accessed on 26 July 2021).
- Gaines, A.M. Protodolomite redefined. J. Sediment. Res. 1977, 47, 543–546. [Google Scholar]
- Brylicki, W.; Lysek, N. Properties and the use of generated waste in the process of gas desulphurization in a fluidized bed (Własności a wykorzystanie odpadów powstających w procesie odsiarczania gazów na złożu fluidalnym). Cement. Lime. Concr. (Cem. Wapno Beton) 1996, 3, 97–103. [Google Scholar]
- Ikavalko, E.; Laitinen, T.; Parkka, M.; Yliruokanen, I. Intercomparizon of trace-element determination in samples from a Coal Fired Power-Plant. Int. J. Environ. Anal. Chem. 1995, 61, 207–224. [Google Scholar] [CrossRef]
- Kanafek, J.; Fojcik, E. The use of fly ash in mining—Technical aspects (Wykorzystanie popiołów lotnych w górnictwie- aspekty techniczne). Environ. Prot. Law Policy (Ochr. Środowiska Prawo Polityka) 1998, 1, 23–34. [Google Scholar]
- Lysek, N. Sorbents for the Desulphurization of Gases. Production and Application (Sorbenty do Odsiarczania Gazów. Produkcja i Zastosowanie); Publishing House OREKOP: Krakow, Poland, 1997; ISBN 83-908066-0-6. [Google Scholar]
- Nadziakiewicz, J.; Janusz, M. Mitigation of sulphur dioxide emission in power plant boilers. Fuel Energy Manag. (Gospod. Paliwami Energią) 1999, 12, 12–15. [Google Scholar]
- Szlugaj, J.; Naworyta, W. Analysis of the changes in the Polish gypsum resources in the context of flue gas desulfurization in conventional power plants. Miner. Resour. Manag. 2015, 31, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Szlugaj, J.; Galos, K. Limestone sorbents market for flue gas desulphurisation in coal-fired power plants in the context of the transformation of the power industry—A case of Poland. Energies 2021, 14, 4275. [Google Scholar] [CrossRef]
- Lewicka, E.; Szlugaj, J.; Burkowicz, A.; Galos, K. Sources and markets of limestone flour in Poland. Resources 2020, 9, 118. [Google Scholar] [CrossRef]
- Sanders, J.F.; Keener, T.C.; Wang, J. Heated fly ash, hydrate lime slurries for SO2 removal in spray drayer absorbers. Ind. Eng. Chem. Res. 1995, 34, 302–307. [Google Scholar] [CrossRef]
- Lim, J.; Cho, H.; Kim, J. Optimization of wet flue gas desulfurization system using recycled waste oyster shell as high-grade limestone substitutes. J. Clean. Prod. 2021, 37, 128492. [Google Scholar] [CrossRef]
- Lim, J.; Choi, Y.; Kim, G.; Kim, J. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone. Korean J. Chem. Eng. 2020, 37, 2085–2093. [Google Scholar] [CrossRef]
- Pozzi, M.; Stanienda, K. Effect of magnesium content in Triassic limestones from the ‘Tarnów Opolski’ deposit on their sorption properties in the flue gas desulphurization process. Sci. J. Sil. Univ. Technol. 2000, 246, 427–437. [Google Scholar]
- Stanienda, K. The Impact of the Dolomitization of Triassic Limestones in the ‘Tarnów Opolski’ Deposit on the Possibility of Their Use in the Flue Gas Desulphurization Process. Ph.D. Thesis, Silesian University of Technology, Gliwice, Poland, 2000. [Google Scholar]
- Ahn, D.J.; Berman, A.; Charych, D. Probing the dynamics of template-directed calcite crystallization with in situ FTIR. J. Phys. Chem. 1996, 100, 12455–12461. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Mielczarski, J.A.; Barrea, O.; Schott, J. Surface spaciation models of calcite and dolomite aqueous solution interfaces and their spectroscopic evaluation. Langmuir 2000, 16, 2677–2688. [Google Scholar] [CrossRef]
- Ramseyer, K.; Miano, T.M.; D’Orazio, V.; Wildberger, A.; Wagner, T.; Geister, J. Nature and origin of organic matter in carbonates from speleothems, marine cements and coral skeletons. Org. Geochem. 1997, 26, 361–378. [Google Scholar] [CrossRef]
- Ji, J.; Ge, Y.; Balsam, W.; Damuth, J.E.; Chen, J. Rapid identification of dolomite using a Fourier Transform Infrared Spectrophotometer (FTIR): A fast method for identifying Heinrich events in IODP Site U1308. Mar. Geol. 2009, 258, 60–68. [Google Scholar] [CrossRef]
- Nadachowski, F. Outline of Refractory Technology (Zarys Technologii Materiałów Ogniotrwałych); Silesian Publishig House: Wrocław, Poland, 1972. [Google Scholar]
- Deer, W.A.; Howie, R.A.; Zusman, J. Rock-Forming Minerals; Geological Society of Glasgow: Glasgow, UK, 1966. [Google Scholar]
- Borkowska, M.; Smulikowski, K. Rock-Forming Minerals (Minerały Skałotwórcze); Geological Publishers: Warsaw, Poland, 1973. [Google Scholar]
Point | Mineral | Type of Chemical Element (%mass) (Figure 10) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | O Normalized | C Normalized | Mg | Si | Al | Ca | K | Ba | Sr | Fe | Mn | ||
1 | Ordered Dolomite [Ca0.53,Mg0.47CO3] | 53.80 | 8.80 | 13.20 | 0.00 | 0.00 | 24.20 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
2 | High-Mg Calcite (Ca0.60,Mg0.40)CO3 | 54.80 | 8.00 | 10.70 | 0.00 | 0.00 | 26.30 | 0.00 | 0.00 | 0.00 | 0.20 | 0.00 | 100.00 |
3 | Low-Mg Calcite (Ca0.99,Mg0.01)CO3 | 50.60 | 8.00 | 0.30 | 0.00 | 0.00 | 41.00 | 0.00 | 0.00 | 0.10 | 0.00 | 0.00 | 100.00 |
4 | Low-Mg Calcite (Ca0.99,Mg0.01)CO3 | 46.70 | 11.60 | 0.20 | 0.00 | 0.00 | 41.50 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
5 | High-Mg Calcite (Ca0.77,Mg0.23)CO3 | 45.90 | 8.60 | 7.10 | 0.00 | 0.00 | 38.40 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 100.00 |
Point | Mineral | Type of Chemical Element (%mass) (Figure 11) | Total | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Number | O Normalized | C Normalized | Mg | Si | Al | Ca | K | Ba | Sr | Fe | Mn | ||
1 | Huntite [Ca0.48,Mg0.52CO3] | 48.36 | 11.543 | 14.04 | 0.00 | 0.029 | 25.19 | 0.00 | 0.00 | 0.024 | 0.814 | 0.00 | 100.00 |
2 | Huntite [Ca0.47,Mg0.53CO3] | 47.32 | 12.902 | 14.01 | 0.00 | 0.017 | 24.78 | 0.00 | 0.00 | 0.00 | 0.971 | 0.00 | 100.00 |
3 | Ordered Dolomite [Ca0.53,Mg0.47CO3] | 49.02 | 11.526 | 13.42 | 0.00 | 0.017 | 24.87 | 0.010 | 0.00 | 0.00 | 1.093 | 0.044 | 100.00 |
4 | Huntite [Ca0.46,Mg0.54CO3] | 46.59 | 12.187 | 14.72 | 0.00 | 0.033 | 24.99 | 0.001 | 0.080 | 0.00 | 1.399 | 0.000 | 100.00 |
5 | Huntite [Ca0.48,Mg0.52CO3] | 45.60 | 12.36 | 15.92 | 0.005 | 0.025 | 24.78 | 0.00 | 0.00 | 0.017 | 1.266 | 0.027 | 100.00 |
6 | Low-Mg Calcite (Ca0.99,Mg0.01)CO3 | 42.82 | 14.967 | 0.186 | 0.00 | 0.017 | 41.88 | 0.00 | 0.00 | 0.00 | 0.109 | 0.021 | 100.00 |
7 | Low-Mg Calcite (Ca0.99,Mg0.01)CO3 | 44.71 | 12.495 | 0.159 | 0.00 | 0.00 | 42.53 | 0.00 | 0.00 | 0.00 | 0.106 | 0.00 | 100.00 |
8 | Low-Mg Calcite CaCO3 | 43.18 | 12.445 | 0.104 | 0.00 | 0.00 | 44.02 | 0.00 | 0.008 | 0.00 | 0.238 | 0.005 | 100.00 |
No | Unit | Sample Number | MgO (%) | Sample Weight (g) | Drying Temperature (K) | Calcination Temperature (K) | SO2 Stream Flowing through the Installation (mg/min) | Quantity of S in a Post-Absorbent Product (%) | The Amount of SO2 Absorbed during the Test |
---|---|---|---|---|---|---|---|---|---|
1 | Gogolin Unit | G1 | 0.83 | 3.1835 | 378 | 1223 | 7.31 | 0.43 | 0.86 |
2 | G6 | 0.22 | 5.0632 | 378 | 1223 | 7.81 | 0.27 | 0.54 | |
3 | LD9 | 0.90 | 2.5265 | 378 | 1223 | 7.39 | 0.38 | 0.76 | |
4 | LD11 | 0.80 | 1.9895 | 378 | 1223 | 4.60 | 0.31 | 0.62 | |
5 | Górażdże Unit | W1 | 0.99 | 2.5647 | 378 | 1223 | 7.86 | 0.25 | 0.50 |
6 | W5 | 0.99 | 2.5379 | 378 | 1223 | 8.23 | 0.18 | 0.36 | |
7 | SA5 | 0.36 | 2.0750 | 378 | 1223 | 8.46 | 0.26 | 0.52 | |
8 | Dziewkowice Unit | SA12 | 0.80 | 2.1472 | 378 | 1223 | 8.77 | 0.24 | 0.48 |
9 | S8 | 0.85 | 4.5833 | 378 | 1223 | 6.63 | 0.24 | 0.48 | |
10 | SO1 | 0,.76 | 2.3942 | 378 | 1223 | 8.16 | 0.34 | 0.68 | |
11 | Karchowice Unit | SA2 | 5.67 | 1.7481 | 378 | 1223 | 9.38 | 0.28 | 0.56 |
12 | SO14 | 6.98 | 2.3891 | 378 | 1223 | 5.39 | 0.30 | 0.60 | |
13 | SO17 | 8.72 | 3.3464 | 378 | 1223 | 5.24 | 0.31 | 0.62 | |
14 | SO20 | 0.89 | 4.1621 | 378 | 1223 | 8.23 | 0.37 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanienda-Pilecki, K.J. The Use of Limestones Built of Carbonate Phases with Increased Mg Content in Processes of Flue Gas Desulfurization. Minerals 2021, 11, 1044. https://doi.org/10.3390/min11101044
Stanienda-Pilecki KJ. The Use of Limestones Built of Carbonate Phases with Increased Mg Content in Processes of Flue Gas Desulfurization. Minerals. 2021; 11(10):1044. https://doi.org/10.3390/min11101044
Chicago/Turabian StyleStanienda-Pilecki, Katarzyna Jadwiga. 2021. "The Use of Limestones Built of Carbonate Phases with Increased Mg Content in Processes of Flue Gas Desulfurization" Minerals 11, no. 10: 1044. https://doi.org/10.3390/min11101044
APA StyleStanienda-Pilecki, K. J. (2021). The Use of Limestones Built of Carbonate Phases with Increased Mg Content in Processes of Flue Gas Desulfurization. Minerals, 11(10), 1044. https://doi.org/10.3390/min11101044