Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone
Abstract
:1. Introduction
2. Initial Conditions
2.1. Initial Rock Composition
2.2. Initial Fluid Composition
3. Modeling Method
4. Results and Discussion
4.1. River Water Chemistry and Secondary Mineral Assemblage
4.1.1. Models with O2-Bearing Fluid (Case I-R)
4.1.2. Models with H2-Bearing Fluid (Case: II-R)
4.2. Groundwater Chemistry and Secondary Mineral Assemblage
4.2.1. Models with O2-Bearing Initial Fluid (Case I-SG: Shallow Groundwater)
4.2.2. Models with H2-Bearing Initial Fluid (Case II-SG: Shallow Groundwater)
4.2.3. Models with Gas-Free Initial Fluid (Case III-DG: Deep Groundwater)
4.3. Potential Physicochemical Condition for Saponite Formation in Gale Crater
4.4. Potential Physicochemical Condition for Hematite and Magnetite Formation
4.5. Available Free Energy in the Lake Water–Groundwater Mixing Zone
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Phase | Chemical Formula |
---|---|
Alunite | KAl3(OH)6(SO4)2 |
Anhydrite | CaSO4 |
Aragonite | CaCO3 |
Artinite | Mg2CO3(OH)2·3H2O |
Bernalite | Fe(OH)3 |
Boehmite | AlO(OH) |
Brucite | Mg(OH)2 |
Ca-beidellite | Ca0.175Al2.35Si3.65O10(OH)2 |
Ca-Fe-saponite | Ca0.175Fe3Al0.35Si3.65O10(OH)2 |
Ca-montmorillonite | Ca0.175Mg0.35Al1.65Si4O10(OH)2 |
Ca-nontronite | Ca0.175Fe2Al0.35Si3.65O10(OH)2 |
Ca-saponite | Ca0.175Mg3Al0.35Si3.65O10(OH)2 |
Calcite | CaCO3 |
Chalcedony | SiO2 |
Chrysotile | Mg3Si2O5(OH)4 |
Cristobalite | SiO2 |
Diaspore | AlHO2 |
Fe(OH)2 | Fe(OH)2 |
Fe++-beidellite | Fe0.175Al2.35Si3.65O10(OH)2 |
Fe++-Fe-saponite | Fe3.175Al0.35Si3.65O10(OH)2 |
Fe++-montmorillonite | Fe0.175Mg0.35Al1.65Si4O10(OH)2 |
Fe++-nontronite | Fe2.175Al0.35Si3.65O10(OH)2 |
Fe++-saponite | Fe0.175Mg3Al0.35Si3.65O10(OH)2 |
Gibbsite | Al(OH)3 |
Goethite | FeOOH |
Greenalite | Fe3Si2O5(OH)4 |
Halite | NaCl |
Hematite | Fe2O3 |
Huntite | CaMg3(CO3)4 |
Hydromagnesite | Mg5(OH)2(CO3)4·4H2O |
K-beidellite | K0.35Al2.35Si3.65O10(OH)2 |
K-Fe-saponite | K0.35Fe3Al0.35Si3.65O10(OH)2 |
K-montmorillonite | K0.35Mg0.35Al1.65Si4O10(OH)2 |
K-nontronite | K0.35Fe2Al0.35Si3.65O10(OH)2 |
K-saponite | K0.35Mg3Al0.35Si3.65O10(OH)2 |
Kaolinite | Al2Si2O5(OH)4 |
Magnesite | MgCO3 |
Magnetite | Fe3O4 |
Mg-beidellite | Mg0.175Al2.35Si3.65O10(OH)2 |
Mg-Fe-saponite | Mg0.175Fe3Al0.35Si3.65O10(OH)2 |
Mg-montmorillonite | Mg0.525Al1.65Si4O10(OH)2 |
Mg-nontronite | Mg0.175Fe2Al0.35Si3.65O10(OH)2 |
Mg-saponite | Mg3.175Al0.35Si3.65O10(OH)2 |
Na-beidellite | Na0.35Al2.35Si3.65O10(OH)2 |
Na-Fe-saponite | Na0.35Fe3Al0.35Si3.65O10(OH)2 |
Na-montmorillonite | Na0.35Mg0.35Al1.65Si4O10(OH)2 |
Na-nontronite | Na0.35Fe2Al0.35Si3.65O10(OH)2 |
Na-saponite | Na0.35Mg3Al0.35Si3.65O10(OH)2 |
Portlandite | Ca(OH)2 |
Pyrite | FeS2 |
Pyrrhotite | FeS |
Quartz | SiO2 |
Sepiolite | Mg4Si6O15(OH)2(H2O)2·4H2O |
Siderite | FeCO3 |
Sillimanite | Al2SiO5 |
SiO2(amorphous) | SiO2 |
Sulfur | S |
References
- Fassett, C.I.; Head, J.W. The timing of martian valley network activity: Constraints from buffered crater counting. Icarus 2008, 195, 61–89. [Google Scholar] [CrossRef]
- Ehlmann, B.L.; Mustard, J.F.; Murchie, S.L.; Bibring, J.P.; Meunier, A.; Fraeman, A.A.; Langevin, Y. Subsurface water and clay mineral formation during the early history of Mars. Nature 2011, 479, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Grotzinger, J.P.; Sumner, D.Y.; Kah, L.C.; Stack, K.; Gupta, S.; Edgar, L.; Rubin, D.; Lewis, K.; Schieber, J.; Mangold, N.; et al. A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale crater, Mars. Science 2014, 343, 1242777. [Google Scholar] [CrossRef] [PubMed]
- Hurowitz, J.A.; Grotzinger, J.P.; Fischer, W.W.; McLennan, S.M.; Milliken, R.E.; Stein, N.; Vasavada, A.R.; Blake, D.F.; Dehouck, E.; Eigenbrode, J.L.; et al. Redox stratification of an ancient lake in Gale crater, Mars. Science 2017, 356, eaah6849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaniman, D.T.; Bish, D.L.; Ming, D.W.; Bristow, T.F.; Morris, R.V.; Blake, D.F.; Chipera, S.J.; Morrison, S.M.; Treiman, A.H.; Rampe, E.B.; et al. Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1243480. [Google Scholar] [CrossRef]
- Freissinet, C.; Glavin, D.P.; Mahaffy, P.R.; Miller, K.E.; Eigenbrode, J.L.; Summons, R.E.; Brunner, A.E.; Buch, A.; Szopa, C.; Archer, P.D.; et al. Organic molecules in the Sheepbed Mudstone, Gale Crater, Mars. J. Geophys. Res. Planets 2015, 120, 495–514. [Google Scholar] [CrossRef] [Green Version]
- Nixon, S.; Cousins, C.R.; Cockell, C. Plausible microbial metabolisms on Mars. Astron. Geophys. 2013, 54, 13–16. [Google Scholar] [CrossRef] [Green Version]
- Price, A.; Pearson, V.K.; Schwenzer, S.P.; Miot, J.; Olsson-Francis, K. Nitrate-dependent iron oxidation: A potential Mars metabolism. Front. Microbiol. 2018, 9, 513. [Google Scholar] [CrossRef] [Green Version]
- Tung, H.C.; Bramall, N.E.; Price, P.B. Microbial origin of excess methane in glacial ice and implications for life on Mars. Proc. Natl. Acad. Sci. USA 2005, 102, 18292–18296. [Google Scholar] [CrossRef] [Green Version]
- Macey, M.C.; Fox-Powell, M.; Ramkissoon, N.K.; Stephens, B.P.; Barton, T.; Schwenzer, S.P.; Pearson, V.K.; Cousins, C.R.; Olsson-Francis, K. The identification of sulfide oxidation as a potential metabolism driving primary production on late Noachian Mars. Sci. Rep. 2020, 10, 10941. [Google Scholar] [CrossRef]
- King, G.M. Carbon monoxide as a metabolic energy source for extremely halophilic microbes: Implications for microbial activity in Mars regolith. Proc. Natl. Acad. Sci. USA 2015, 112, 4465–4470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis-Harper, E.; Pearson, V.K.; Summers, S.; Bridges, J.C.; Schwenzer, S.P.; Olsson-Francis, K. The microbial community of a terrestrial anoxic inter-tidal zone: A model for laboratory-based studies of potentially habitable ancient lacustrine systems on Mars. Microorganisms 2018, 6, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cousins, C. Volcanogenic fluvial-lacustrine environments in Iceland and their utility for identifying past habitability on Mars. Life 2015, 5, 568–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amils, R.; González-Toril, E.; Fernández-Remolar, D.; Gómez, F.; Aguilera, Á.; Rodríguez, N.; Malki, M.; García-Moyano, A.; Fairén, A.G.; de la Fuente, V.; et al. Extreme environments as Mars terrestrial analogs: The Rio Tinto case. Planet. Space Sci. 2007, 55, 370–381. [Google Scholar] [CrossRef]
- Gronstal, A.; Pearson, V.; Kappler, A.; Dooris, C.; Anand, M.; Poitrasson, F.; Kee, T.P.; Cockell, C.S. Laboratory experiments on the weathering of iron meteorites and carbonaceous chondrites by iron-oxidizing bacteria. Meteorit. Planet. Sci. 2009, 44, 233–247. [Google Scholar] [CrossRef]
- Oren, A.; Elevi Bardavid, R.; Mana, L. Perchlorate and halophilic prokaryotes: Implications for possible halophilic life on Mars. Extremophiles 2014, 18, 75–80. [Google Scholar] [CrossRef]
- Fukushi, K.; Sekine, Y.; Sakuma, H.; Morida, K.; Wordsworth, R. Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nat. Commun. 2019, 10, 4896. [Google Scholar] [CrossRef]
- McCollom, T.M.; Shock, E.L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim. Cosmochim. Acta 1997, 61, 4375–4391. [Google Scholar] [CrossRef]
- Amend, J.P.; McCollom, T.M.; Hentscher, M.; Bach, W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim. Cosmochim. Acta 2011, 75, 5736–5748. [Google Scholar] [CrossRef]
- McCollom, T.M.; Amend, J.P. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology 2005, 3, 135–144. [Google Scholar] [CrossRef]
- Kato, S.; Nakamura, K.; Toki, T.; Ishibashi, J.; Tsunogai, U.; Hirota, A.; Ohkuma, M.; Yamagishi, A. Iron-based microbial ecosystem on and below the seafloor: A case study of hydrothermal fields of the southern mariana trough. Front. Microbiol. 2012, 3, 89. [Google Scholar] [CrossRef] [Green Version]
- Takai, K.; Nakamura, K. Archaeal diversity and community development in deep-sea hydrothermal vents. Curr. Opin. Microbiol. 2011, 14, 282–291. [Google Scholar] [CrossRef] [PubMed]
- McLennan, S.M.; Anderson, R.B.; Bell, J.F.; Bridges, J.C.; Calef, F.; Campbell, J.L.; Clark, B.C.; Clegg, S.; Conrad, P.; Cousin, A.; et al. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1244734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bristow, T.F.; Bish, D.L.; Vaniman, D.T.; Morris, R.V.; Blake, D.F.; Grotzinger, J.P.; Rampe, E.B.; Crisp, J.A.; Achilles, C.N.; Ming, D.W.; et al. The origin and implications of clay minerals from Yellowknife Bay, Gale crater, Mars. Am. Miner. 2015, 100, 824–836. [Google Scholar] [CrossRef]
- Mangold, N.; Thompson, L.M.; Forni, O.; Williams, A.J.; Fabre, C.; Le Deit, L.; Wiens, R.C.; Williams, R.; Anderson, R.B.; Blaney, D.L.; et al. Composition of conglomerates analyzed by the Curiosity rover: Implications for Gale Crater crust and sediment sources. J. Geophys. Res. Planets 2016, 121, 353–387. [Google Scholar] [CrossRef]
- Jugo, P.J. An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300 °C and 1·0 GPa. J. Geophys. Res. Planets 2004, 46, 783–798. [Google Scholar] [CrossRef] [Green Version]
- Carroll, M.R.; Webster, J.D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Rev. Mineral. 1994, 30, 231–279. [Google Scholar] [CrossRef]
- Zelenski, M.; Taran, Y. Volcanic emissions of molecular chlorine. Geochim. Cosmochim. Acta 2012, 87, 210–226. [Google Scholar] [CrossRef]
- Kurokawa, H.; Kurosawa, K.; Usui, T. A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions. Icarus 2018, 299, 443–459. [Google Scholar] [CrossRef] [Green Version]
- Pollack, J.B.; Kasting, J.F.; Richardson, S.M.; Poliakoff, K. The case for a wet, warm climate on early Mars. Icarus 1987, 71, 203–224. [Google Scholar] [CrossRef] [Green Version]
- Owen, T. The composition of the Martian atmosphere. Adv. Space Res. 1982, 2, 75–80. [Google Scholar] [CrossRef]
- Noda, N.; Imamura, S.; Sekine, Y.; Kurisu, M.; Fukushi, K.; Terada, N.; Uesugi, S.; Numako, C.; Takahashi, Y.; Hartmann, J. Highly oxidizing aqueous environments on early Mars inferred from scavenging pattern of trace metals on manganese oxides. J. Geophys. Res. Planets 2019, 124, 1282–1295. [Google Scholar] [CrossRef]
- Lanza, N.L.; Wiens, R.C.; Arvidson, R.E.; Clark, B.C.; Fischer, W.W.; Gellert, R.; Grotzinger, J.P.; Hurowitz, J.A.; McLennan, S.M.; Morris, R.V.; et al. Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geophys. Res. Lett. 2016, 43, 7398–7407. [Google Scholar] [CrossRef] [Green Version]
- Ramirez, R.M. A warmer and wetter solution for early Mars and the challenges with transient warming. Icarus 2017, 297, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, 6257. [Google Scholar] [CrossRef] [PubMed]
- Schwenzer, S.P.; Abramov, O.; Allen, C.C.; Bridges, J.C.; Clifford, S.M.; Filiberto, J.; Kring, D.A.; Lasue, J.; McGovern, P.J.; Newsom, H.E.; et al. Gale Crater: Formation and post-impact hydrous environments. Planet. Space Sci. 2012, 70, 84–95. [Google Scholar] [CrossRef]
- Wolery, T.; Jarek, R. Software User’S Manual EQ3/6 (Version 8.0); Sandia National Laboratories: Albuquerque, NM, USA, 2003.
- Johnson, J.W.; Oelkers, E.H.; Helgeson, H.C. Supcrt92—A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5000-bar and 0 to 1000°C. Comput. Geosci. 1992, 18, 899–947. [Google Scholar] [CrossRef]
- Shock, E.L.; Helgeson, H.C. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures: Correlation algorithms for ionic species and equation of state predictions to 5kb and 1000 °C. Geochim. Cosmochim. Acta 1988, 52, 2009–2036. [Google Scholar] [CrossRef]
- Shock, E.L.; Koretsky, C.M. Metal-organic complexes in geochemical processes: Estimation of standard partial molal thermodynamic properties of aqueous complexes between metal-cations and monovalent organic-acid ligands at high-pressures and temperatures. Geochim. Cosmochim. Acta 1995, 59, 1497–1532. [Google Scholar] [CrossRef]
- Shock, E.L.; Helgeson, H.C.; Sverjensky, D.A. Calculation of the thermodynamic and transport-properties of aqueous species at high-pressures and temperatures: Standard partial molal properties of inorganic neutral species. Geochim. Cosmochim. Acta 1989, 53, 2157–2183. [Google Scholar] [CrossRef]
- Majzlan, J.; Grevel, K.D.; Navrotsky, A. Thermodynamics of Fe oxides: Part II. Enthalpies of formation and relative stability of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am. Miner. 2003, 88, 855–859. [Google Scholar] [CrossRef]
- Majzlan, J.; Lang, B.E.; Stevens, R.; Navrotsky, A.; Woodfield, B.F.; Boerio-Goates, J. Thermodynamics of Fe oxides: Part I. Entropy at standard temperature and pressure and heat capacity of goethite (α-FeOOH), lepidocrocite (γ-FeOOH), and maghemite (γ-Fe2O3). Am. Miner. 2003, 88, 846–854. [Google Scholar] [CrossRef]
- Wilson, J.; Savage, D.; Cuadros, J.; Shibata, M.; Ragnarsdottir, K.V. The effect of iron on montmorillonite stability. (I) Background and thermodynamic considerations. Geochim. Cosmochim. Acta 2006, 70, 306–322. [Google Scholar] [CrossRef]
- Drummond, S. Boiling and Mixing of Hydrothermal Fluids: Chemical Effects on Mineral Precipitation. Ph.D. Thesis, The Pennsylvania State University, State College, PA, USA, 1982. [Google Scholar]
- Zolotov, M.Y. Aqueous fluid composition in CI chondritic materials: Chemical equilibrium assessments in closed systems. Icarus 2012, 220, 713–729. [Google Scholar] [CrossRef]
- Viennet, J.-C.; Bultel, B.; Riu, L.; Werner, S.C. Dioctahedral phyllosilicates versus zeolites and carbonates versus zeolites competitions as constraints to understanding early Mars alteration conditions. J. Geophys. Res. Planets 2017, 122, 2328–2343. [Google Scholar] [CrossRef]
- Treiman, A.H.; Morris, R.V.; Agresti, D.G.; Graff, T.G.; Achilles, C.N.; Rampe, E.B.; Bristow, T.F.; Ming, D.W.; Blake, D.F.; Vaniman, D.T.; et al. Ferrian saponite from the Santa Monica Mountains (California, U.S.A., Earth): Characterization as an analog for clay minerals on Mars with application to Yellowknife Bay in Gale Crater. Am. Miner. 2014, 99, 2234–2250. [Google Scholar] [CrossRef]
- Chemtob, S.M.; Nickerson, R.D.; Morris, R.V.; Agresti, D.G.; Catalano, J.G. Oxidative alteration of ferrous smectites and implications for the redox evolution of early Mars. J. Geophys. Res. Planets 2017, 122, 2469–2488. [Google Scholar] [CrossRef] [Green Version]
- Bridges, J.C.; Schwenzer, S.P.; Leveille, R.; Westall, F.; Wiens, R.C.; Mangold, N.; Bristow, T.; Edwards, P.; Berger, G. Diagenesis and clay mineral formation at Gale Crater, Mars. J. Geophys. Res. Planets 2015, 120, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melwani Daswani, M.; Schwenzer, S.P.; Reed, M.H.; Wright, I.P.; Grady, M.M. Alteration minerals, fluids, and gases on early Mars: Predictions from 1-D flow geochemical modeling of mineral assemblages in meteorite ALH 84001. Meteorit. Planet. Sci. 2016, 51, 2154–2174. [Google Scholar] [CrossRef] [Green Version]
- Schieber, J.; Bish, D.; Coleman, M.; Reed, M.; Hausrath, E.M.; Cosgrove, J.; Gupta, S.; Minitti, M.E.; Edgett, K.S.; Malin, M.; et al. Encounters with an unearthly mudstone: Understanding the first mudstone found on Mars. Sedimentology 2017, 64, 311–358. [Google Scholar] [CrossRef]
- Ming, D.W.; Archer, P.; Glavin, D.; Eigenbrode, J.; Franz, H.; Sutter, B.; Brunner, A.; Stern, J.; Freissinet, C.; McAdam, A. Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars. Science 2014, 343, 1245267. [Google Scholar] [CrossRef]
- Michalski, J.R.; Cuadros, J.; Niles, P.B.; Parnell, J.; Deanne Rogers, A.; Wright, S.P. Groundwater activity on Mars and implications for a deep biosphere. Nat. Geosci. 2013, 6, 133–138. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2003. [Google Scholar]
- Baum, M.; Wordsworth, R. Groundwater flow to Gale Crater in an episodically warm climate. J. Geophys. Res. Planets 2020, 125. [Google Scholar] [CrossRef]
- Kawano, M.; Tomita, K. Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation. Am. Miner. 2001, 86, 400–410. [Google Scholar] [CrossRef]
- Chaffin, M.S.; Deighan, J.; Schneider, N.M.; Stewart, A.I.F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 2017, 10, 174–178. [Google Scholar] [CrossRef]
- Hurowitz, J.A.; Fischer, W.; Tosca, N.J.; Milliken, R.E. Origin of acidic surface waters and the evolution of atmospheric chemistry on early Mars. Nat. Geosci. 2010, 3, 323–326. [Google Scholar] [CrossRef]
- Tosca, N.J.; Ahmed, I.A.M.; Tutolo, B.M.; Ashpitel, A.; Hurowitz, J.A. Magnetite authigenesis and the warming of early Mars. Nat. Geosci. 2018, 11, 635–639. [Google Scholar] [CrossRef]
- Lupton, J.E. Hydrothermal plumes: Near and far field. Seafloor Hydrothermal Syst. Phys. Chem. Biol. Geol. Interact. 1995, 91, 317–346. [Google Scholar] [CrossRef]
- Emerson, D.; Fleming, E.J.; McBeth, J.M. Iron-oxidizing bacteria: An environmental and genomic perspective. Annu. Rev. Microbiol. 2010, 64, 561–583. [Google Scholar] [CrossRef] [PubMed]
- Edwards, K.J.; Bach, W.; McCollom, T.M.; Rogers, D.R. Neutrophilic iron-oxidizing bacteria in the ocean: Their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol. J. 2004, 21, 393–404. [Google Scholar] [CrossRef]
- Kato, S.; Kikuchi, S.; Kashiwabara, T.; Takahashi, Y.; Suzuki, K.; Itoh, T.; Ohkuma, M.; Yamagishi, A. Prokaryotic abundance and community composition in a freshwater iron-rich microbial mat at circumneutral pH. Geomicrobiol. J. 2012, 29, 896–905. [Google Scholar] [CrossRef]
- Kikuchi, S.; Makita, H.; Konno, U.; Shiraishi, F.; Ijiri, A.; Takai, K.; Maeda, M.; Takahashi, Y. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment. Geobiology 2016, 14, 374–389. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, Y.; Hirata, T.; Shimizu, H.; Ozaki, T.; Fortin, D. A rare earth element signature of bacteria in natural waters? Chem. Geol. 2007, 244, 569–583. [Google Scholar] [CrossRef]
- Kato, S.; Chan, C.; Itoh, T.; Ohkuma, M. Functional gene analysis of freshwater iron-rich flocs at circumneutral pH and isolation of a stalk-forming microaerophilic iron-oxidizing bacterium. Appl. Environ. Microbiol. 2013, 79, 5283–5290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Druschel, G.K.; Emerson, D.; Sutka, R.; Suchecki, P.; Luther, G.W. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms. Geochim. Cosmochim. Acta 2008, 72, 3358–3370. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | FeO | MgO | CaO | Na2O | K2O | SO2 | HCl | Total |
---|---|---|---|---|---|---|---|---|---|
49.34 | 13.15 | 15.45 | 5.66 | 6.72 | 3.94 | 0.86 | 3.44 | 1.44 | 100 |
Case | Initial Fluid | Type of Water | Gas Exchange during Water-Rock Reactions | Temperature (°C) | Case Code | Note |
---|---|---|---|---|---|---|
I | O2-bearing water (O2 0.002 bar + CO2 0.998 bar) | River water | YES | 5 | I-R | |
Groundwater | NO | 5, 25, 100, 200 | I-SG | Simulating shallow groundwater | ||
II | H2-bearing water (H2 0.1 bar + CO2 0.9 bar) | River water | YES | 5 | II-R | |
Groundwater | NO | 5, 25, 100, 200 | II-SG | Simulating shallow groundwater | ||
III | Gas free water | Groundwater | NO | 5, 25, 100, 200 | III-DG | Simulating deep groundwater |
Groundwater | River Water | |
---|---|---|
Initial fluid | I-SG | I-R |
W/R | 1000 | 3000 |
T (°C) | 5 | 5 |
pH | 5.6 | 4.9 |
Na | 1.4 | 0.42 |
K | 0.20 | 0.061 |
Ca | 1.3 | 0.40 |
Mg | 1.5 | 0.41 |
Fe | 0.87 | 1.4 × 10−8 |
S | 0.42 | 0.18 |
Cl | 0.43 | 0.13 |
ΣCO2 | 64 | 67 |
SiO2 | 0.033 | 0.033 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kikuchi, S.; Shibuya, T. Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone. Minerals 2021, 11, 341. https://doi.org/10.3390/min11040341
Kikuchi S, Shibuya T. Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone. Minerals. 2021; 11(4):341. https://doi.org/10.3390/min11040341
Chicago/Turabian StyleKikuchi, Sakiko, and Takazo Shibuya. 2021. "Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone" Minerals 11, no. 4: 341. https://doi.org/10.3390/min11040341
APA StyleKikuchi, S., & Shibuya, T. (2021). Thermodynamic Constraints on Smectite and Iron Oxide Formation at Gale Crater, Mars: Insights into Potential Free Energy from Aerobic Fe Oxidation in Lake Water–Groundwater Mixing Zone. Minerals, 11(4), 341. https://doi.org/10.3390/min11040341