Kilogram Sample Analysis by Nuclear Analytical Techniques: Complementary Opportunities for the Mineral and Geosciences
Abstract
:1. Introduction
2. Methods and Concepts
3. Opportunities for the Mineral and Geosciences
3.1. The Assessment of the Representativeness of Test Portions for the Material Collected
3.2. Direct Analysis of Materials for Which Homogenization Is Inconvenient, Difficult or Close to Impossible, and/or too Expensive Due to Material Properties
3.3. Analysis of Materials That Have to Maintain Their Integrity and/or That Are too Precious and Not Allowed to Be Damaged by Sub-Sampling, such as Museum Pieces
3.4. Studies in Which the Degree and/or Location of (in)Homogeneity Is the Subject of Interest. Examples Are Compositional Studies of Precious Mineral Nuggets within Ores, Sedimentation Layers in (Soil, Sediment) Drill Cores, etc.
4. Quality Control
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harmon, R.S.; Russo, R.E.; Hark, R.R. Applications of laser-induced breakdown spectroscopy for geochemical and environmental analysis: A comprehensive review. Spectrochim. Acta Part B Atomic Spectrosc. 2013, 87, 11–26. [Google Scholar] [CrossRef]
- Halden, N.M. PIXE Analysis in Mineralogy and Geochemistry. Can. Mineral. 1995, 33, 293–302. [Google Scholar]
- Reed, S.J.B. Electron Microprobe Analysis and Scanning Electron Microscopy in Geology; Cambridge University Press (CUP): Cambridge, UK, 2005. [Google Scholar]
- Heinrich, C.; Pettke, T.; Halter, W.; Aigner-Torres, M.; Audétat, A.; Günther, D.; Hattendorf, B.; Bleiner, D.; Guillong, M.; Horn, I. Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim. Cosmochim. Acta 2003, 67, 3473–3497. [Google Scholar] [CrossRef]
- Nimmerfall, G.; Schrön, W. Direct solid sample analysis of geological samples with SS-GF=AAS and use of 3D calibration. Fres. J. Anal. Chem. 2001, 370, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Ichikawa, S.; Nakamura, T. Approaches to solid sample preparation based on analytical depth for reliable X-ray fluorescence analysis. X-ray Spectrom 2016, 45, 302–307. [Google Scholar] [CrossRef]
- Wobrauschek, P. Total reflection x-ray fluorescence analysis—A review. X-ray Spectrom 2007, 36, 289–300. [Google Scholar] [CrossRef]
- Glascock, M.D. Activation Analysis, Chapter 4 in Instrumental Multi-Element Chemical Analysis; Alfassi, Z.B., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Horwitz, W. Nomenclature for sampling in analytical chemistry (Recommendations 1990). Pure Appl. Chem. 1990, 62, 1193–1208. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.H.; Ellison, S.L.R.; Rostron, P. (Eds.) Eurachem/EUROLAB/CITAC/Nordtest/AMC Guide: Measurement Uncertainty Arising from Sampling: A Guide to Methods and Approaches, 2nd ed.; Eurachem, 2019; ISBN1 978-0-948926-35-6. Available online: http://www.eurachem.org (accessed on 22 April 2021)ISBN2 978-0-948926-35-6.
- Thompson, M. Recent trends in inter-laboratory precision at ppb and sub-ppb concentrations in relation to fitness for purpose criteria in proficiency testing. Analyst 2000, 125, 385–386. [Google Scholar] [CrossRef]
- Ellison, S.L.R.; Ramsey, M.H.; Larance, P.; Stuart, B.; Minguez, J.; Walker, M.J. Is measurement uncertainty from sampling related to analyte concentration? Anal. Meth. 2017, 9, 5989–5996. [Google Scholar] [CrossRef]
- Munzart, M.; Kiessling, G.; Ubelhor, W.; Natscher, L.; Neubert, K.H. Expanded measurement uncertainty of soil parameters derived from proficiency testing data. J. Plant Soil Sci. 2007, 170, 722–728. [Google Scholar] [CrossRef]
- Bode, P.; Lakmaker, O.; van Aller, P.; Blaauw, M. Feasibility studies of neutron activation analysis with kilogram-size samples. Anal. Bioanal. Chem. 1998, 360, 10–17. [Google Scholar] [CrossRef]
- Blaauw, M.; Degenaar, I.H.; Yonezawa, C.; Matsue, H.; De Goeij, J.J.M. Validation experiment for large-sample prompt-gamma neutron activation analysis. J. Radioanal. Nucl. Chem. 2007, 271, 745–750. [Google Scholar] [CrossRef] [Green Version]
- Segebade, C.; Bode, P.; Goerner, W. The problem of large samples: An activation analysis study of electronic waste material. J. Radioanal. Nucl. Chem. 2007, 271, 261–268. [Google Scholar] [CrossRef] [Green Version]
- Greenberg, R.R.; Bode, P.; Fernandes, E.A.D.N. Neutron activation analysis: A primary method of measurement. Spectrochim. Acta Part B Atomic Spectrosc. 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Starovoitova, V.; Segebade, C. High intensity photon sources for activation analysis. J. Radioanal. Nucl. Chem. 2016, 310, 13–26. [Google Scholar] [CrossRef]
- Randa, Z.; Kucera, J.; Mizera, J.; Franan, J. Comparions of the role of photon and neutron activation analysis for elemental characterization of geological, bioilogical and environmental materials. J. Radioanal. Nucl. Chem. 2007, 271, 589–596. [Google Scholar] [CrossRef]
- Segebade, C.; Weise, H.P.; Lutz, G.J. Photon Activation Analysis; De Gruyter: Berlin, Germany, 1987; p. 705. ISBN 10 0899253053. [Google Scholar]
- Molnar, G. Handbook of Prompt Gamma Activation Analysis; Springer: Berlin/Heidelberg, Germany, 2004; p. 423. ISBN 978-1-4020-1304-1. [Google Scholar]
- Clayton, C.G.; Hassan, A.M.; Wormal, M.R. Multielement analysis of coal during borehole logging by measurement of prompt gamma-rays from thermal neutron capture. Int. J. Appl. Radiat. Isot. 1983, 34, 83–93. [Google Scholar] [CrossRef]
- Senftle, F.E. Neutron induced radioactivity for mineral explorations. NBS Spec. Publ. 1980, 594, 604–614. [Google Scholar]
- Michaelis, W. Nuclear Techniques in Marine Metal Exploration; GKSS Report 79/E/52; GKSS: Geesthacht, Germany, 1979; p. 16. [Google Scholar]
- Vourvopoulos, G. Industrial on-line bulk analysis using nuclear techniques. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1991, 56–57, 917–920. [Google Scholar] [CrossRef]
- Franklin, D.M.; Armstrong, R.; Chettle, D.R.; Scott, C. An improved in vivo neutron activation system for measuring kidney cadmium. Phys. Med. Biol. 1990, 35, 1397–1408. [Google Scholar] [CrossRef]
- Bode, P.; Overwater, R.M.W. Trace element determinations in very large samples: A new challenge for neutron activation analysis. J. Radioanal. Nucl. Chem. 1993, 167, 169–176. [Google Scholar] [CrossRef]
- Overwater, R.M.W.; Hoogenboom, J.E. Accounting for the Thermal Neutron Flux Depression in Voluminous Samples for Instrumental Neutron Activation Analysis. Nucl. Sci. Eng. 1994, 117, 141–157. [Google Scholar] [CrossRef]
- Tzika, F.; Stamatelatos, I.E.; Kalef-ezra, J.; Bode, P. Large Sample Neutron Activation Analysis: Correction for neutron and gamma attenuation. Nukleonika 2004, 49, 115–121. [Google Scholar]
- Overwater, R.M.; Bode, P.; De Goeij, J.J. Gamma-ray spectroscopy of voluminous sources Corrections for source geometry and self-attenuation. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1993, 324, 209–218. [Google Scholar] [CrossRef]
- Overwater, R.; Bode, P. Computer simulations of the effects of inhomogeneities on the accuracy of large sample INAA. Appl. Radiat. Isot. 1998, 49, 967–976. [Google Scholar] [CrossRef]
- Tzika, F.; Stamatelatos, I.E.; Kalef-ezra, J. Neutron activation analysis of large volume samples: The influence of in-homogeneity. J. Radioanal. Nucl. Chem. 2007, 271, 233–240. [Google Scholar] [CrossRef]
- Council Directive 2013/59/Euratom Laying down Basic Safety Standards for Protection Against the Dangers Arising from Exposure to Ionising Radiation, and Repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Available online: https://eur-lex.europa.eu/eli/dir/2013/59/2014-01-17 (accessed on 13 April 2021).
- Acharya, R.; Swain, K.; Sudarshan, K.; Tripathi, R.; Pujari, P.; Reddy, A. Large sample NAA work at BARC: Methodology and applications. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2010, 622, 460–463. [Google Scholar] [CrossRef]
- Roth, C.; Barbos, D.; Gugiu, D.; Datcu, A.; Dobrea, D.; Preda, M.; Gligor, M.; Mweetwa, M.B. Irradiation and measurement devices and methods development for LSNAA applications at the TRIGA-ACPR core. J. Radioanal. Nucl. Chem. 2011, 291, 461–466. [Google Scholar] [CrossRef]
- Nyarko, B.J.B.; Asamoah, M.; Gyampo, O.; Akaho, E.H.K.; Yamoah, S.; Mensimah, E.; Abrefah, R.G. Design of a Large Irradiation Channel at MNSR Facility in Ghana. J. Ann. Nucl. Energy 2011, 38, 431–437. [Google Scholar] [CrossRef]
- Bedregal, P.S.; Mendoza, P.A.; Cohen, I.M.; Baltuano, O.; Montoya, E.H. Neutron activation analysis of archaeological artifacts using the conventional relative method: A realistic approach for analysis of large samples. J. Radioanal. Nucl. Chem. 2011, 291, 37–42. [Google Scholar] [CrossRef]
- Sueki, K.; Kobayashi, K.; Sato, W.; Nakahara, H.; Tomizawa, T. Nondestructive Determination of Major Elements in a Large Sample by Prompt γ Ray Neutron Activation Analysis. Anal. Chem. 1996, 68, 2203–2209. [Google Scholar] [CrossRef]
- Ma, J.-L.; Carasco, C.; Perot, B.; Mauerhofer, E.; Kettler, J.; Havenith, A. Prompt gamma neutron activation analysis of toxic elements in radioactive waste packages. Appl. Radiat. Isot. 2012, 70, 1261–1263. [Google Scholar] [CrossRef]
- IAEA. TECDOC 1838 Advances in Neutron Activation Analysis of Large Objects with Emphasis on Archaeological Examples; Results of a Coordinated Research Project; IAEA: Vienna, Austria, 2018. [Google Scholar]
- Baas, H.W.; Blaauw, M.; Bode, P.; De Goeij, J.J.M. Collimated scanning towards 3D-INAA of inhomogeneous large samples. Anal. Bioanal. Chem. 1999, 363, 753–759. [Google Scholar] [CrossRef]
- Vasilopoulou, T.; Tzika, F.; Stamatelatos, I.E. Collimated scanning for large sample neutron activation analysis of inhomogeneous samples. J. Radioanal. Nucl. Chem. 2011, 291, 479–483. [Google Scholar] [CrossRef]
- Sekimoto, S.; Saito, Y.; Ito, D.; Homura, Y.; Ebihara, M.; Kawabata, Y. Attempts for Simultaneous Observation of Image and Elemental Component in a Pottery Sample using Neutrons. Phys. Procedia 2013, 43, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Maróti, B.; Kis, Z.; Szentmiklósi, L.; Horváth, E.; Káli, G.; Belgya, T. Characterization of a South-Levantine bronze sculpture using position-sensitive prompt gamma activation analysis and neutron imaging. J. Radioanal. Nucl. Chem. 2017, 312, 367–375. [Google Scholar] [CrossRef]
- Blaauw, M. The k0 calibration of the IRI system for INAA of samples in the kg range. J. Radioanal. Nucl. Chem. 1997, 220, 233–235. [Google Scholar] [CrossRef]
- Nair, A.G.C.; Acharya, R.; Sudarshan, K.; Gangotra, S.; Reddy, A.V.R.; Manohar, S.B.; Goswami, A. Development of an Internal Monostandard Instrumental Neutron Activation Analysis Method Based on In Situ Detection Efficiency for Analysis of Large and Nonstandard Geometry Samples. Anal. Chem. 2003, 75, 4868–4874. [Google Scholar] [CrossRef] [PubMed]
- Bode, P. Quality control in large sample analysis. J. Radioanal. Nucl. Chem. 2007, 271, 333–337. [Google Scholar] [CrossRef] [Green Version]
- De Nadai Fernandes, E.A.; Bode, P. Sampling and Homogenization Studies of Uranium Mining Waste Rocks Using Normal and Large-Sample INAA. J. Radioanal. Nucl. Chem. 2000, 244, 589–594. [Google Scholar] [CrossRef]
- Malik, H.; Parry, S.J. Importance of the sampling constant for the determination of gold in 425 heterogeneous materials. Analyst 1992, 117, 1347–1349. [Google Scholar] [CrossRef]
- Řanda, Z.; Špaček, B.; Mizera, J. Fast determination of gold in large mass samples of gold ore by phoexcitatioin reactions using 10MeV Bremsstrahlung. J. Radioanal. Nucl. Chem. 2007, 271, 603–606. [Google Scholar] [CrossRef]
- Miransky, I.A.; Kist, A.A.; Bakhrieva, F.B.; Teplyakov, P.V. Multielemental automated INAA system for gold ore samples. J. Radioanal. Nucl. Chem. 1993, 168, 329–336. [Google Scholar] [CrossRef]
- Beeley, P.A.; Garrett, R.G. Neutron activation analysis of multiple large geological samples by in-pool irradiation using a SLOWPOKE-2 reactor. J. Radioanal. Nucl. Chem. 1993, 167, 177–185. [Google Scholar] [CrossRef]
- Swain, K.K.; Ajith, N.; Acharya, R.; Verma, R.; Reddy, A.V.R. Large sample neutron activation analysis of dross for gold and silver. J. Radioanal. Nucl. Chem. 2012, 294, 319–322. [Google Scholar] [CrossRef]
- Abdullah, J.; Mosorov, V.; Yahya, R.; Dahing, N.S.; Shari, M.R.; Terry, A.M. Visualization of chemical composition in the Terengganu’s inscribed stone using neutron induced prompt gamma ray techniques: A Monte Carlo simulation study. In Proceedings of the 6th World Congress on Industrial Process Tomography, Beijing, China, 6–9 September 2010; pp. 976–982. [Google Scholar]
- Mildenberger, F.; Mauerhofer, E. Prompt gamma neutron activation analysis of large heterogenous samples composed of concrete and polyethylene. J. Radioanal. Nucl. Chem. 2016, 309, 1265–1269. [Google Scholar] [CrossRef]
- Latif, S.A.; Oura, Y.; Ebihara, M.; Nakahara, H. Non-destructive elemental analysis of large meteorite samples by prompt gamma-ray neutron activation analysis with the internal mono-standard method. Anal. Bioanal. Chem. 2013, 405, 8749–8759. [Google Scholar] [CrossRef]
- Stamatelatos, I.E.; Tzika, F.; Vasilopoulou, T.; Koster-Ammerlaan, M.J.J. Large sample neutron activation analysis of a ceramic vase. J. Radioanal. Nucl. Chem. 2010, 283, 735–740. [Google Scholar] [CrossRef] [Green Version]
- Vasilopoulou, T.; Stamatelatos, I.E.; Montoya, E.H.; Bedregal, P.S.; Tsalafoutas, I.; Bode, P. Large sample neutron activation analysis of irregular-shaped pottery artifacts. J. Radioanal. Nucl. Chem. 2015, 303, 853–858. [Google Scholar] [CrossRef]
- Stamatelatos, I.E.; Vasilopoulou, T.; Filippaki, E.; Georgolopoulou, P.; Ntalla, E.; Bassiakos, Y. Photon activation analysis of large metallurgical slag samples using a 23 MV medical linear accelerator. J. Radioanal. Nucl. Chem. 2016, 309, 165–171. [Google Scholar] [CrossRef]
- Blaauw, M.; Baas, H.W.; Donze, M. Height-resolved large-sample INAA of a 1 m long, 13 cm diameter ditch-bottom sample. Nucl. Instrum. Methods Phys. 2003, A505, 512–516. [Google Scholar] [CrossRef]
- Tagliaferro, F.S.; De Nadai Fernandes, E.A.; Bode, P.; Baas, H.W. Collimated LS-INAA scanning for testing trace element homogeneity in Brazilian coffee beans. J. Radioanal. Nucl. Chem. 2008, 278, 415–418. [Google Scholar] [CrossRef]
- Söllradl, S.; Mühlbauer, M.; Kudejova, P.; Türler, A. Development and Test of a Neutron Imaging Setup at the PGAA Instrument at FRM II. Phys. Procedia 2015, 69, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Bode, P.; (Delft University of Technology, Delft, The Netherlands); Koster-Ammerlaan, M.J.J.; (Delft University of Technology, Delft, The Netherlands). Personal communication.
Country | Location | Neutron Source | Irradiation System | Thermal Neutron Flux cm−2·s−1 | Maximum Sample Dimensions (D = diameter, H = height) |
---|---|---|---|---|---|
Brazil | CDTN-CNEN, Belo Horizonte | Reactor, IPR-R1 | In-pool | 6.3 × 1011 | 1.2 cm D 4 cm H |
Egypt | Atomic Energy Authority, Cairo, | Reactor, ETRR-2 | Thermal column | 1.3 × 1012 | 9.6 cm D 25.7 cm H |
Ghana | National Nuclear Research Institute, Ghana Atomic Energy Commission, Accra | Reactor, GHARR-1 | Channel in Graphite reflector | 3.5 × 1010 | 15 cm D 30 cm H |
India, Mumbai | Bhabha Atomic Research Centre (BARC), Mumbai | Reactor, Apsara | Thermal column | 1.0 × 108 | 30 cm × 60 cm × 100 cm |
Japan | Department of Chemistry, Tokyo Metropolitan University, Tokyo, | Reactor, JRR-3M | Neutron beam | 1.0 × 106–1.0 × 107 | 2 cm × 3 cm |
Netherlands. Delft | Delft University of Technology, Reactor Institute Delft, | Reactor, HOR | Thermal column | 3.0 × 108 | 14 cm D 100 cm H |
Peru | Instituto Peruano de Energía Nuclear, Lima | Reactor, PNRR | Neutron beam | 3.9 × 1010 | 18 cm × 23 cm |
Romania | Institute for Nuclear Research Pitesti, | Reactor, ACPR | Dry Channel | 1.0 × 1013 | 14 cm D 28 cm H |
Russian Federation | Saint-Petersburg Nuclear Physics Institute. Gatchina, | Reactor, WWR-M | Dry Channel | 1.0 × 108–1.0 × 109 | 35 cm × 40 cm × 70 cm |
Chemical Element | Zeta (ζ)) Score | ||||
---|---|---|---|---|---|
Major elements (g) | |||||
Fe | 35.0 | 1.0 | 36.0 | 0.8 | 0.8 |
Ca | 28.1 | 1.0 | 27.1 | 1.0 | −0.7 |
K | 26.7 | 1.0 | 28.8 | 0.6 | 1.7 |
Na | 9.8 | 0.4 | 10.2 | 0.2 | 0.9 |
Minor and trace elements (mg) | |||||
As | 28 | 3 | 29.6 | 1.5 | 0.1 |
Ba | 900 | 30 | 1000 | 200 | 0.4 |
Br | 17 | 2 | 18.1 | 0.4 | 0.7 |
Ce | 88 | 8 | 81 | 6 | −0.6 |
Co | 17 | 2 | 16.7 | 0.6 | −0.1 |
Cr | 225 | 19 | 244 | 8 | 0.9 |
Ga | 16.3 | 1.9 | 16 | 2 | 0.0 |
La | 42 | 4 | 43.3 | 1.0 | 0.4 |
Rb | 127 | 10 | 130 | 30 | 0.2 |
Sb | 5.0 | 0.7 | 5.2 | 0.2 | 0.3 |
Sc | 11.3 | 1.4 | 11.2 | 0.2 | 0.0 |
Th | 13.0 | 1.6 | 13.7 | 0.9 | 0.4 |
U | 3.3 | 0.5 | 2.9 | 1.4 | −0.2 |
Zn | 630 | 40 | 500 | 40 | −2.1 |
Zr | 600 | 40 | 730 | 80 | 1.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bode, P. Kilogram Sample Analysis by Nuclear Analytical Techniques: Complementary Opportunities for the Mineral and Geosciences. Minerals 2021, 11, 443. https://doi.org/10.3390/min11050443
Bode P. Kilogram Sample Analysis by Nuclear Analytical Techniques: Complementary Opportunities for the Mineral and Geosciences. Minerals. 2021; 11(5):443. https://doi.org/10.3390/min11050443
Chicago/Turabian StyleBode, Peter. 2021. "Kilogram Sample Analysis by Nuclear Analytical Techniques: Complementary Opportunities for the Mineral and Geosciences" Minerals 11, no. 5: 443. https://doi.org/10.3390/min11050443
APA StyleBode, P. (2021). Kilogram Sample Analysis by Nuclear Analytical Techniques: Complementary Opportunities for the Mineral and Geosciences. Minerals, 11(5), 443. https://doi.org/10.3390/min11050443