Geochemical Fractions of Heavy Metals in Bottom Sediments of the Pobeda Hydrothermal Cluster in the Mid-Atlantic Ridge (17°07′–17°08′ N)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geological Setting and Sampling
2.2. Geochemical and Mineralogical Analyzes
3. Results
3.1. Distribution of CaCO3 and Major Elements Down the Cores
3.2. Distribution of the Ore Metals in Two Cores
3.3. Distribution of Geochemical Fractions of Metals in Two Cores
3.4. Mineral Composition of the Sediments in Two Cores
3.5. Data on SEM-Micro X-ray Spectral Analysis of Selected Specimens from the Ore-Bearing and Background Sediment Cores
3.6. Correlation Relationships between Elements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Skornyakova, N.S. The dispersed iron and manganese in the Pacific bottom sediments. Lithol. Min. Resour. 1964, 5, 3–20. (In Russian) [Google Scholar]
- Boström, K.; Peterson, M.N.A. Precipitates from hydrothermal exhalations on the East Pacific Rise. Econ. Geol. 1966, 61, 1258–1265. [Google Scholar] [CrossRef]
- Bonatti, E. Mechanism of deep-sea volcanism in the South Pacific. Res. Geochem. 1967, 2, 215–221. [Google Scholar]
- Boström, K. The origin and fate of ferromanganese active ridge sediments. Stockh. Contrib. Geol. 1973, XXVII, 148–243. [Google Scholar]
- Lisitzin, A.P.; Bogdanov, Y.A.; Gurvich, E.G. The Hydrothermal Deposits in the Ocean. Rift Systems; Nauka: Moscow, Russia, 1990; 248p. (In Russian) [Google Scholar]
- Lisitzin, A.P. The Hydrothermal systems of the World Ocean: Input of endogenous substance. In Hydrothermal Systems and Sedimentary Formation of the Mid-Ocean. Ridges; Nauka: Moscow, Russia, 1993; pp. 147–245. (In Russian) [Google Scholar]
- Gurvich, E.G. Metalliferous Sediments of the World Ocean: A Fundamental Theory of Deep-Sea Hydrothermal Sedimentation; Kirchner, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; 413p. [Google Scholar]
- German, C.R.; Von Damm, K.L. Hydrothermal processes. In Treatise on Geochemistry; Turekian, K., Holland, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 181–222. [Google Scholar]
- Mills, R.A.; Elderfield, H. Hydrothermal activity and geochemistry of metalliferous sediments. Geophys. Monogr. 1995, 91, 392–407. [Google Scholar]
- Rona, P.A. Hydrothermal mineralozation at seafloor spreading center. Earth Sci. Rew. 1984, 20, 1–104. [Google Scholar] [CrossRef]
- Gablina, I.F.; Dmitrenko, O.B.; Oskina, N.S.; Khusid, T.A.; Popova, E.A. Impact of hydrothermal activity on carbonate microfossils in bottom sediments of the tropical Atlantic. Oceanology 2015, 55, 100–111. [Google Scholar] [CrossRef]
- Gablina, I.F.; Demina, L.L.; Dmitrenko, O.B.; Oskina, N.S.; Popova, E.A.; Khusid, T.A.; Shilov, V.V. The composition, distribution, and features of the post sedimentation alteration of microfossils from the recent bottom sediments of hydrothermal field Ashadze-1 (13° N, MAR). Oceanology 2011, 51, 505–520. [Google Scholar] [CrossRef]
- Boyle, E.A. Cadmium, zinc, copper, and barium in foraminifera tests. Earth Planet. Sci. Lett. 1981, 53, 11–35. [Google Scholar] [CrossRef]
- Demina, L.L.; Oskina, N.S. The new data on elemental composition of planktonic foraminifera microfossils of the Atlantic Ocean. Dokl. Earth Sci. 2016, 471, 224–229. [Google Scholar] [CrossRef]
- Hein, J.R.; Mizell, K.; Koschinsky, A.; Conrad, T.A. Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources. Ore Geol. Rev. 2013, 51, 1–14. [Google Scholar] [CrossRef]
- Sukhanova, A.; Firstova, A.; Stepanova, T.; Cherkashov, G. Uranium in seafloor massive sulfides at the Mid-Atlantic Ridge. In Proceedings of the Sustainable Development of Seabed Mineral Resources: Environment, Regulations and Technologies, UMS 2019 48th Underwater Mining Conference, Sanya, China, 22 September 2019; p. 3. [Google Scholar]
- González, F.J.; Rincón-Tomás, B.; Somoza, L.; Santofimia, E.; Medialdea, T.; Madureira, P.; López-Pamo, E.; Hein, J.R.; Marino, E.; de Ignacio, C.; et al. Low-temperature, shallow-water hydrothermal vent mineralization following the recent submarine eruption of Tagoro volcano (El Hierro, Canary Islands). Mar. Geol. 2020, 430, 106333. [Google Scholar] [CrossRef]
- Somoza, L.; González, F.J.; Barker, S.J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J.T.; Palomino, D. Evolution of submarine eruptive activity during the 2011-2012 El Hierro event as documented by hydro-acoustic images and remotely operated vehicle observations. Geochem. Geophys. Geosyst. 2017, 18, 3109–3137. [Google Scholar] [CrossRef] [Green Version]
- Marino, E.; González, F.J.; Kuhn, T.; Madureira, P.; Wegorzewski, A.V.; Mirao, J.; Medialdea, T.; Oeser, M.; Miguel, C.; Reyes, J.; et al. Hydrogenetic, Diagenetic and Hydrothermal Processes Forming Ferromanganese Crusts in the Canary Island Seamounts and Their Influence in the Metal Recovery Rate with Hydrometallurgical Methods. Minerals 2019, 9, 439. [Google Scholar] [CrossRef] [Green Version]
- Gablina, I.F.; Dobretsova, I.F.; Beltenev, V.E.; Lyutkevich, A.D.; E., V.; Narkevskii, E.V.; Gustaitis, A.N. Peculiarities of modern sulfide mineralization at 19°15′–20°08′ N, Mid Atlantic Ridge. Dokl. Earth Sci. 2012, 442, 163–167. [Google Scholar] [CrossRef]
- Gablina, I.F.; Popova, E.A.; Sadchikova, T.A.; Savichev, A.T.; Gor’kova, N.V.; Os’kina, N.S.; Khusid, T.A. Hydrothermal metasomatic alteration of carbonate bottom sediments in the Ashadze-1 field (13° N Mid-Atlantic Ridge). Geol. Ore Depos. 2014, 56, 357–379. [Google Scholar] [CrossRef]
- Gablina, I.F.; Dobretsova, I.G.; Narkevskii, E.V.; Gustaitis, A.N.; Sadchikova, T.A.; Gor’kova, N.V.; Savichev, A.T.; Lyutkevich, A.D.; Dara, O.M. Influence of hydrothermal-metasomatic processes on the formation of present-day sulfide ores in carbonate bottom sediments at the Mid-Atlantic Ridge (19°–20° N). Lithol. Min. Resour. 2017, 52, 335–357. [Google Scholar] [CrossRef]
- Gablina, I.F.; Dobretsova, I.G.; Popova, E.A.; Dara, O.M.; Sadchikova, T.A.; Gor’kova, N.V.; Mikheev, V.V. Mineral composition and geochemical zoning of bottom sediments of the Pobeda hydrothermal cluster (17°07.45′ N–17°08.7′ N, Mid-Atlantic Ridge). Lithol. Min. Resour. 2021, 56, 113–131. [Google Scholar] [CrossRef]
- Beltenev, V.E.; Narkevsky, E.V.; Dobretsova, I.G.; Gablina, I.F.; Galkin, S.V.; Molodtsova, T.N.; Layba, A.A. The results of Professor Logatchev-37 cruise, MAR. In Proceedings of the XXI International Scientific Conference (School) on Marine Geology, Moscow, Russia, 16–20 November 2015; GEOS: Moscow, Russia, 2015; pp. 126–128. (In Russian). [Google Scholar]
- Beltenev, V.E.; Rozhdestvenskay, I.I.; Samsonov, I.K. Exploration Work on the Russian Exploration Area in the Atlantic Ocean with an Estimate Forecast Resources of GPS of Categories P2 and P3 in Blocks 31-Report of Professor Logachev-37 Cruise; Lomonosov, Russia; PMGRE: Saint Petersburg, Russia, 2016. (In Russian) [Google Scholar]
- Gablina, I.F.; Dobretsova, I.G.; Layba, A.A.; Narkevskii, E.V.; Maksimov, F.E.; Kuznetsov, V.Y. Features of sulfide ores at hydrothermal cluster Pobeda (17°07.45′ N–17°08.7′ N, the Mid-Atlantic Ridge). Lithol. Min. Resour. 2018, 6, 1–26. [Google Scholar] [CrossRef]
- Maslennikov, V.V.; Cherkashov, G.A.; Artemyev, D.A.; Firstova, A.R.; Large, R.R.; Tseluyko, A.; Kotlyarov, V. Pyrite varieties at Pobeda hydrothermal fields, Mid-Atlantic ridge 17°07–17°08 N: LA-ICP-MS data deciphering. Minerals 2020, 10, 622. [Google Scholar] [CrossRef]
- Bich, A.S.; Petrov, Y.A. Study of the ore-bearing sediments to reconstruct processes of hydrothermal tore formation (on the example of the Pobeda hydrothermal cluster, MAR). In Proceedings of the Scientific Conference on Metallogeny of the Ancient and Modern Oceans. Institute of Mineralogy UD RAS, Miass, Russia, 12–15 April 2018; pp. 117–127. (In Russian). [Google Scholar]
- Krasnov, S.G.; Cherkashov, G.A.; Ainemer, A.I.; Grintal, E.F.; Grichuk, D.V.; Davidov, M.P. Hydrothermal Sulfide Ores and Metalliferous Sediments in the Ocean; Nedra: Saint-Petersburg, Russia, 1992; 278p. (In Russian) [Google Scholar]
- Amplieva, E.E.; Bortnikov, N.S.; Kovalchuk, E.V.; Beltenev, V.E. The Pobeda modern submarine hydrothermal sulfide edifice cluster (Mid-Atlantic Ridge, 17 08’ N): Mineralogy and chemical composition. In Proceedings of the 14th SGA Biennial Meeting. Mineral Resources to Discover, Quebec Citi, QC, Canada, 20–23 August 2017; Volume 1–4, pp. 649–652. [Google Scholar]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Ure, A.M.; Quevauviller, P.; Muntau, H.; Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Community. Int. J. Environ. Anal. Chem. 1993, 51, 135–151. [Google Scholar] [CrossRef]
- Luoma, S.N.; Bryan, G.W. A statistical assessment of the forms of trace metals in oxidized estuarine sediments employing chemical extractants. Sci. Total Environ. 1981, 17, 165–196. [Google Scholar] [CrossRef]
- Chester, R.; Hughes, M.J. A chemical technique for separation of ferromanganese minerals and adsorbed trace metals from pelagic sediments. Chem. Geol. 1967, 3, 249–262. [Google Scholar] [CrossRef]
- Kitano, Y.; Fujiyoshi, R. A selective chemical leaching of Cd, Cu, Mn and Fe in marine sediments. Geochem. J. 1980, 14, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Quevauviller, P.; Ure, A.; Muntau, H.; Griepink, B. Improvement of analytical measurements within the BCR programme: Single and sequential extraction procedures applied to soil and sediment analysis. Int. J. Environ. Anal. Chem. 1993, 51, 129–134. [Google Scholar] [CrossRef]
- Pueyo, M.; Rauret, G.; Lück, D.; Yli-Halla, M.; Muntau, H.; Quevauviller, P.; López-Sánchez, J.F. Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimized three-step sequential extraction procedure. J. Environ. Monit. 2001, 3, 243–250. [Google Scholar] [CrossRef]
- Sutherland, R.A.; Tack, F.M.G. Fractionation of Cu, Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential. Adv. Environ. Res. 2003, 8, 37–50. [Google Scholar] [CrossRef]
- Moore, D.M.; Reynolds, R.C. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, UK; New York, NY, USA, 1997; 378p. [Google Scholar]
- Gerasimov, V.N.; Dolivo-Dobrovolskaya, E.M.; Kamentsev, I.E.; Kondratyeva, V.V.; Kosoy, A.L.; Lesyuk, G.I.; Rozhdestvenskaya, I.V.; Stroganov, E.V.; Filatov, S.K.; Frank-Kamenetskaya, O.V. Guide to X-ray Analysis of the Main Types of Rock-Forming Minerals; UDC: 548.73; Nedra: Leningrad, Russia, 1975; 399p. (In Russian) [Google Scholar]
- Butusova, G.Y. Types of modern hydrothermal and hydrothermal-sedimentary deposits in the active zone of the World Ocean. Lithol. Miner. Resour. 1989, 5, 3–24. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Holland, H.D., Turekian, K.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2004; Volume 3, pp. 1–64. [Google Scholar]
- Lisitzin, A.P. The Sedimentation Processes in the Ocean; Nauka: Moscow, Russia, 1978; 392p. (In Russian) [Google Scholar]
- Krauskopf, K.B. Separation of manganese and iron in sedimentary processes. Geochim. Cosmochim. Acta. 1957, 12, 61–84. [Google Scholar] [CrossRef]
- Froelich, P.N.; Klinkhammer, G.P.; Bender, M.L.; Luedtke, N.A.; Heat, G.R.; Cullen, D.; Daupgin, P.; Hammond, D.; Hartmann, B.; Maynard, V. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochim. Cosmochim. Acta 1979, 43, 1075–1090. [Google Scholar] [CrossRef]
- Postma, D. Concentration of Mn and separation from Fe in sediments—I. Kinetics and stoichiometry of the reaction between birnessite and dissolved Fe(II) at 10 °C. Geochim. Cosmochim. Acta 1985, 49, 1023–1033. [Google Scholar] [CrossRef]
- Burdige, D.J. The biogeochemistry of manganese and iron reduction in marine sediments. Earth-Sci. Rev. 1993, 35, 249–284. [Google Scholar] [CrossRef]
- Demina, L.L.; Bud’ko, D.F.; Alekseeva, T.N.; Novigatsky, A.N.; Filippov, A.S.; Kochenkova, A.I. Partitioning of trace elements in the early diagenesis of bottom sediments in the White Sea. Geochem. Int. 2017, 55, 144–149. [Google Scholar] [CrossRef]
- Budko, D.F.; Demina, L.L.; Lisitzin, A.P.; Kravchishina, M.D.; Politova, N.V. The occurrence forms of heavy metals in the recent sediments of the White and Barents Seas. Dokl. Earth Sci. 2017, 474, 93–98. [Google Scholar] [CrossRef]
- Demina, L.L.; Budko, D.F.; Novigatsky, A.N.; Alexseeva, T.N.; Kochenkova, A.I. Occurrence forms of heavy metals in the bottom sediments of the White Sea. In Handbook of Environmental Chemistry. Sedimentation Processes in the White Sea: The White Sea Environment Part II; Lisitsyn, A.P., Demina, L.L., Eds.; Springer International Publishing AG: Cham, Switzerland, 2018; pp. 241–270. [Google Scholar] [CrossRef]
- Demina, L.L.; Dara, O.M.; Aliev, R.D.; Alekseeva, T.N.; Budko, D.F.; Novichkova, E.A.; Politova, N.V.; Solomatina, A.S.; Bulokhov, A.V. Elemental and mineral composition of the Barents Sea recent and Late Pleistocene−Holocene sediments: A correlation with environmental conditions. Minerals 2020, 10, 593. [Google Scholar] [CrossRef]
- Nemchenko, E.I.; Lipatnikova, O.A.; Demina, L.L.; Kravchishina, M.D.; Lubkova, T.N. The distribution of elements in the vertical section of bottom sediments in the Black Sea. Mosc. Univ. Geol. Bull. 2020, 75, 168–176. [Google Scholar] [CrossRef]
Core | Depth, cm | TOC, % | TIC, % | Si, % | Al, % | Ca, % | Mg, % | Sr, % |
---|---|---|---|---|---|---|---|---|
184k | 0–5 | 0.14 | 9.04 | 6.78 | 2.00 | 27.36 | 1.39 | 0.21 |
20–25 | 0.14 | 6.41 | 7.98 | 2.17 | 21.98 | 1.10 | 0.16 | |
30–40 | 0.11 | 6.00 | 6.12 | 2.29 | 22.35 | 0.74 | 0.15 | |
40–45 | 0.19 | 1.83 | 5.78 | 2.50 | 7.62 | 0.46 | 0.95 | |
60–65 | 0.18 | 2.05 | 6.15 | 2.55 | 9.59 | 0.66 | 0.65 | |
Average | 0.15 | 5.07 | 6.56 | 2.36 | 17.79 | 0.87 | 0.40 | |
215k | 0–5 | 0.17 | 10.63 | 6.50 | 1.86 | 28.30 | 0.98 | 0.19 |
30–35 | 0.05 | 9.97 | 6.90 | 1.95 | 27.90 | 0.95 | 0.16 | |
40–45 | 0.07 | 8.67 | 10.44 | 2.41 | 24.71 | 1.01 | 0.13 | |
50–55 | 0.04 | 8.75 | 8.68 | 2.10 | 26.69 | 0.96 | 0.14 | |
80–85 | 0.07 | 8.34 | 9.98 | 2.48 | 24.09 | 0.97 | 0.12 | |
100–110 | 0.09 | 8,79 | 9.83 | 2.39 | 24.86 | 0.96 | 0.14 | |
Average | 0.08 | 9.19 | 8.75 | 2.20 | 26.09 | 0.97 | 0.15 |
Fe % | Mn % | Cu ppm | Zn ppm | Pb ppm | As ppm | |
---|---|---|---|---|---|---|
184k | 32.1 | 0.29 | 7438 | 2692 | 328 | 196 |
215k | 2.86 | 0.63 | 620 | 408 | 88 | 109 |
Pelagic clays [43] | 6.08 | 1.02 | 387 | 248 | 89 | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demina, L.; Gablina, I.; Budko, D.; Dara, O.; Solomatina, A.; Gorkova, N.; Smirnova, T. Geochemical Fractions of Heavy Metals in Bottom Sediments of the Pobeda Hydrothermal Cluster in the Mid-Atlantic Ridge (17°07′–17°08′ N). Minerals 2021, 11, 591. https://doi.org/10.3390/min11060591
Demina L, Gablina I, Budko D, Dara O, Solomatina A, Gorkova N, Smirnova T. Geochemical Fractions of Heavy Metals in Bottom Sediments of the Pobeda Hydrothermal Cluster in the Mid-Atlantic Ridge (17°07′–17°08′ N). Minerals. 2021; 11(6):591. https://doi.org/10.3390/min11060591
Chicago/Turabian StyleDemina, Liudmila, Irina Gablina, Dmitry Budko, Olga Dara, Aleksandra Solomatina, Nina Gorkova, and Tatiyana Smirnova. 2021. "Geochemical Fractions of Heavy Metals in Bottom Sediments of the Pobeda Hydrothermal Cluster in the Mid-Atlantic Ridge (17°07′–17°08′ N)" Minerals 11, no. 6: 591. https://doi.org/10.3390/min11060591
APA StyleDemina, L., Gablina, I., Budko, D., Dara, O., Solomatina, A., Gorkova, N., & Smirnova, T. (2021). Geochemical Fractions of Heavy Metals in Bottom Sediments of the Pobeda Hydrothermal Cluster in the Mid-Atlantic Ridge (17°07′–17°08′ N). Minerals, 11(6), 591. https://doi.org/10.3390/min11060591