Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield)
Abstract
:1. Introduction
Geological Background
2. Materials and Methods
3. Results and Observations
3.1. Morphology and Structure of the Sopcheozero Chromite Deposit
3.2. Zoning of the Dunite Block and Ore Body
3.3. Description of the Ore Composition of the Sopcheozero Deposit
3.4. Conditions of Cr-Spinel Origin
4. Discussion
4.1. Problem of the Dunite Block Origin
4.2. Ore Veins Issue
5. Conclusions
- The Sopcheozero deposit is a stratiform early-magmatic deposit typical of the Paleoproterozoic layered mafic-ultramafic intrusions of the Fennoscandian Shield.
- The deposit occurs in the middle part of the dunite-peridotite zone, which is a member of the Monchepluton layered series. The U-Pb age of its formation (2500 ± 10 Ma) complies with the age limits of the whole pluton (2507–2496 Ma). Rocks and ores of the deposit are intersected by the same-age dikes of basic rocks. They intruded at the late stage of the Monchepluton evolution by filling contractional cracks by residual melts.
- The deposit shows a clear lateral zonality regarding the composition of basic rocks. It is reflected in the increased content of intercumulus minerals, i.e., orthopyroxene and plagioclase in host rocks from the central part of the deposit to its flanks. It explains the transit from dunites to plagiodunites and plagioharzburgites.
- The deposit hosts rich, ordinary and poor ores that alternate in the section of ore layers. The Cr2O3 content is >30, 10–30 and 10.6 wt.%, respectively. There are two zonality types of ore layers: normal, with rich ores occurring in the central part of the ore layer, and asymmetric, with rich ores in the lying flank. The ores are represented by rarely disseminated, disseminated, densely disseminated, sideronitic and massive types. Ore layers rarely comprise thin injection veins that do not produce a separate ore type. They can be referred to the podiform type, which is typical of deposits attributed to ophiolitic complexes.
- The main ore phase is represented by magnochromite and magnoalumochromite with MgO slightly prevailing Al2O3, containing the admixture of Ti, Mn, V, Zn and Ni. Besides, the ores contain minor accessory and later interstitial phases. The ore phase is associated with highly magnesian olivine (96–98 Fo) rich in Ni (0.4–1.1 wt.%). It confirms a low S content in the melt and complies with the low oxygen fugacity.
- The coexisting Cr-spinel-olivine pairs crystallized at temperatures from 1258 to 1163 °C, with accessory Cr-spinel crystallizing at relatively low temperatures, while ore Cr-spinel at higher temperatures.
- Dunites and ores in the deposit distinguish with widespread plastic deformations of the translation gliding type in olivine, as well as in orthopyroxene and Cr-spinel at the postcrystallization phase under conditions of high temperature (above 400 °C) and general pressure (5 kbar). Plastic deformations are most common near and at the contact between dunites and ore layers, rarely right in layers.
- At the postmagmatic Svecofennian stage (1.84 Ga) [28], the deposit jointly with the Monchepluton was subject to diverse tectonic deformations. In the results, it was divided into blocks. Some of them were destroyed by erosion. The tectonic deformations are also responsible for local alterations in rocks, i.e., serpentinization, chloritization, amphibolization and talcination, as well as replacement of the ore phase by magnetite.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smolkin, V.F.; Neradovsky, Y.N.; Fedotov, Z.A.; Dedyukhin, A.N.; Mokrushin, A.V. The Sopcheozero chromite deposit confined to the Monchepluton. In Layered Intrusions of the Monchegorsk Ore Region: Petrology, Mineralization, Isotopy, Deep Structure. Part 2; Mitrofanov, F.P., Smolkin, V.F., Eds.; Geological Institute KSC RAS: Apatity, Russia, 2004; pp. 102–152. (In Russian) [Google Scholar]
- Mokrushin, A.V. Types, Composition and Conditions of Formation of Chromite Mineralization of Layered Early Proterozoic Intrusions of the Baltic Shield. Ph.D. Thesis, Murmansk State Technical University, Murmansk, Russia, February 2005; p. 155. (In Russian). [Google Scholar]
- Chashchin, V.V.; Galkin, A.S.; Ozeryanskii, V.V.; Dedyukhin, A.N. Sopcheozero chromite deposit and its platinum potential, Monchegorsk pluton, Kola Peninsula (Russia). Geol. Ore Depos. 1999, 41, 460–468. [Google Scholar]
- Chistyakova, S.; Latypov, R.; Zaccarini, F. Chromitite dykes in the Monchegorsk layered intrusion, Russia: In situ crystallization from chromite-saturated magma flowing in conduits. J. Petrol. 2016, 56, 2395–2424. [Google Scholar] [CrossRef] [Green Version]
- Barkov, A.Y.; Martin, R.F.; Izokh, A.E.; Nikiforov, A.A.; Korolyuk, V.N. Ultramagnesian olivine in the Monchepluton (Fo96) and Pados-tundra (Fo93) layered intrusions (Kola peninsula). Russ. Geol. Geophys. 2021, 62, 324–338. [Google Scholar] [CrossRef]
- Smolkin, V.F. The Paleoproterozoic (2.5–1.7 Ga) midcontinent rift system of the northeastern Fennoscandian Shield. Can. J. Earth Sci. Spes. Publ. 1997, 34, 426–443. [Google Scholar] [CrossRef]
- Smolkin, V.F. Layered Intrusions of Early Proterozoic Basite-Ultramafic rocks of the Baltic Shield: Achievements and Problems. In Petrology and Ore Content of the CIS and Baltic Shield Regions, Proceedings of the International (X All-Russian) Petrographic Meeting, Apatity, Russia, 20–22 June 2005; KSC RAS: Apatity, Russia; pp. 251–253. (In Russian)
- Sharkov, E.V.; Chistyakov, A.V. Geological and petrological aspects of Ni-Cu-PGE mineralization in the early Paleoproterozoic Monchegorsk layered mafic-ultramafic complex, Kola Peninsula. Geol. Ore Depos. 2014, 56, 147–168. [Google Scholar] [CrossRef]
- Rundkvist, T.V.; Mokrushin, A.V.; Bazai, A.V.; Miroshnikova, Y.A.; Pripachkin, P.V. Xenolith of chromite-bearing dunites from the Sopcha massif (Monchegorsk complex, Kola Peninsula). Notes Russ. Mineral. Soc. 2011, 3, 99–109. (In Russian) [Google Scholar]
- Karykowski, B.T.; Maier, W.D.; Groshev, N.Y.; Barnes, S.-J.; Pripachkin, P.V.; McDonald, I. Origin of reef-style PGE mineralization in the paleoproterozoic Monchegorsk complex, Kola Region, Russia. Econ. Geol. 2018, 113, 1333–1358. [Google Scholar] [CrossRef]
- Amelin, Y.V.; Heaman, L.M.; Semenov, V.S. U-Pb geochronology of layered intrusions in the eastern Baltic Shield: Implication for timing and duration of Paleoproterozoic continental rifting. Precambrian Res. 1995, 75, 31–46. [Google Scholar] [CrossRef]
- Bayanova, T.; Mitrofanov, F.; Serov, P.; Nerovich, L.; Yekimova, N.; Nitkina, E.; Kamensky, I. Layered PGE Paleoproterozoic (LIP) intrusions in the N-E part of the Fennoscandian Shield—isotope Nd–Sr and 3He/4He data, summarizing U–Pb Ages (on baddeleyite and zircon), Sm–Nd data (on rock-forming and sulphide minerals), duration and mineralization. In Geochronology—Methods and Case Studies; Merner, N.A., Ed.; InTech: London, UK, 2014; Chapter 6; pp. 143–193. [Google Scholar]
- Chashchin, V.V.; Bayanova, T.B. Sopcheozerskoye chrome deposit of Monchepluton: Geochemistry and U-Pb age. Proc. Fersman Sci. Sess. Geol. Inst. KSC RAS 2021, 18, 403–408. (In Russian) [Google Scholar]
- Smolkin, V.F. Kola–Norwegian province. Early Proterozoic, In Early Precambrian of the Baltic Shield; Glebovitskii, V.A., Ed.; Nauka: St. Petersburg, Russia, 2005; pp. 59–124. (In Russian) [Google Scholar]
- Barnes, S.J.; Roeder, P.L. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. J. Petrol. 2001, 42, 2279–2302. [Google Scholar] [CrossRef]
- Smolkin, V.F.; Mokrushin, A.V. Chrome-spinelides from layered intrusions of the paleoproterozoic Fennoscandian Shield as indicators of petro—and ore genesis. In Springer Proceedings in Earth and Environmental Sciences; Springer: Cham, Switzerland, 2021; in press. [Google Scholar]
- Chernyshov, A.I. Ultramafites (Plastic Flow, Structural and Petrostructural Heterogeneity); Charodey: Tomsk, Russia, 2001; p. 216. (In Russian) [Google Scholar]
- Irvine, T.N. Chromian spinel as a petrogenetic indicator. Part I: Theory. Can. J. Earth Sci. 1965, 2, 648–672. [Google Scholar] [CrossRef]
- Sack, R.O.; Ghiorso, M.S. Chromian spinels as petrogenetic indicators: Thermodynamics and petrological applications. Am. Mineral. 1991, 76, 827–847. [Google Scholar]
- Roeder, P.L.; Reynolds, I. Crystallization of chromite and chromium solubility in basaltic melts. J. Petrol. 1991, 32, 909–934. [Google Scholar] [CrossRef]
- Kamenetsky, V.S.; Crawford, A.J.; Meffre, S. Factors controlling chemistry of magmatic spinel: An empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. J. Petrol. 2001, 42, 655–671. [Google Scholar] [CrossRef] [Green Version]
- Ballhaus, C.; Berry, R.F.; Green, D.H. High pressure experimental calibration of the olivine–orthopyroxene–spinel oxygen geobarometer: Implications for the oxidation state of the upper mantle. Contrib. Mineral. Petrol. 1991, 107, 27–40. [Google Scholar] [CrossRef]
- Poustovetov, A.A.; Roeder, P.L. Numerical modeling of major element distribution between chromian spinel and basaltic melt, with application to chromian spinel in MORBs. Contrib. Mineral. Petrol. 2001, 142, 58–71. [Google Scholar] [CrossRef]
- Poustovetov, A.A.; Roeder, P.L. The distribution of Cr between basaltic melt and chromian spinel as an oxyden geobarometer. Can. Mineral. 2001, 39, 309–317. [Google Scholar] [CrossRef]
- Mokrushin, A.V.; Smolkin, V.F. Geothermobarometry of mafic-ultramafic rock of the Early Proterozoic stratified Monchepluton intrusion (Kola Peninsula). In Geology and Geoecology: Studies of the Young, Proceedings of the XVI Conference of Young Scientists, Dedicated to the Memory Prof. K.O. Kratz, Apatity, Russia, 15 November 2005; Mitrofanov, F.P., Ed.; KSC RAS: Apatity, Russia, 2005; pp. 282–285. (In Russian) [Google Scholar]
- Smolkin, V.F.; Tkachev, A.V. Evolution of the metallogeny of chromite deposits through the Earth’s geological history. NVNovit. News Vernadsky State Geol. Mus. Russ. Acad. Sciences. Dedic. 260th Anniv. Mus. 2019, 16, 172–181. (In Russian) [Google Scholar]
- Perchuk, L.L. Improvement of a two-pyroxene geothermometer for deep peridotites. Dokl. USSR Acad. Sci. 1977, 233, 456–459. (In Russian) [Google Scholar]
- Sharkov, E.V.; Smolkin, V.F.; Belyatskii, V.B.; Chictyakov, A.V.; Fedotov, Z.A. Age of the Moncha Tundra fault, Kola Peninsula: Evidence from the Sm-Nd and Rb-Sr isotopic systematics of metamorphic assemblages. Geochem. Int. 2006, 44, 317–326. [Google Scholar] [CrossRef]
- Kozlov, E.K. Natural Rock Series of Nickel-Bearing Intrusions and Their Metallogeny; Nauka: Leningrad, Russia, 1973; p. 288. (In Russian) [Google Scholar]
- Dokuchayeva, V.S. Dunites from intrusions of the peridotite-gabbro-norite formation type in the Monchegorsk region. In Basic-Ultrabasic Magmatism of the Kola Peninsula; Gorbunov, G.I., Ed.; Kola branch of the USSR Academy of Sciences: Apatity, Russia, 1978; pp. 109–130. (In Russian) [Google Scholar]
- Sushchenko, A.M.; Sidelnikov, M.V.; Groshev, N.Y. Petrography of xenoliths of chromite-bearing rocks from mount Kumuzhiya, Monchegorsk Complex, Russia. Transact. Kola Sci. Cent. Russ. Acad. Sci. Geol. Geochem. Ser. 1 2019, 6, 248–254. (In Russian) [Google Scholar]
wt. % | Cr2O3 | FeO | Fe2O3 | SiO2 | CaO | Al2O3 | MgO | P2O5 | MnO | TiO2 |
---|---|---|---|---|---|---|---|---|---|---|
Rich ore | ||||||||||
n | 140 | 87 | 35 | 111 | 107 | 81 | 105 | 31 | 28 | 26 |
Max. | 52.87 | 16.0 | 15.53 | 26.00 | 2.23 | 11.68 | 30.58 | 0.02 | 0.17 | 0.32 |
Min. | 30.11 | 7.72 | 11.62 | 7.00 | 0.10 | 5.89 | 18.00 | 0.01 | 0.09 | 0.16 |
Avg. | 38.76 | 10.09 | 13.73 | 13.70 | 0.56 | 8.96 | 24.96 | 0.01 | 0.13 | 0.21 |
Ordinary ore | ||||||||||
n | 205 | 102 | 35 | 166 | 162 | 122 | 160 | 43 | 35 | 30 |
Max. | 29.72 | 28.40 | 15.76 | 39.00 | 6.38 | 17.88 | 43.40 | 0.01 | 0.18 | 0.29 |
Min. | 10.02 | 5.66 | 8.94 | 13.00 | 0.10 | 2.06 | 11.00 | 0.00 | 0.07 | 0.12 |
Avg. | 16.65 | 8.90 | 10.55 | 28.39 | 0.71 | 5.07 | 34.39 | 0.01 | 0.13 | 0.18 |
Poor ore | ||||||||||
Max. | 9.47 | 10.19 | - | 42.05 | 1.26 | 3.51 | 43.64 | 0.02 | 0.13 | 0.18 |
Min. | 5.91 | 6.51 | - | 20.00 | 0.52 | 1.88 | 34.12 | 0.01 | 0.10 | 0.08 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
Chr-Type | I | II | III | III-I | III-2 | III-3 | IV | V |
n | 8 | 2 | 66 | 3 | 26 | 1 | 2 | 337 |
Cr2O3 | 42.21 | 50.10 | 55.39 | 55.92 | 56.07 | 54.87 | 55.01 | 51.13 |
Al2O3 | 16.69 | 13.64 | 11.66 | 11.49 | 10.91 | 12.20 | 12.27 | 13.38 |
TiO2 | 0.74 | 0.45 | 0.25 | 0.23 | 0.24 | 0.26 | 0.31 | 0.51 |
FeOtotal | 31.31 | 21.61 | 16.04 | 18.95 | 16.14 | 15.74 | 20.41 | 22.36 |
FeOcalc. | 24.62 | 16.71 | 11.32 | 16.09 | 11.11 | 11.09 | 18.80 | 18.05 |
Fe2O3 calc. | 6.69 | 4.90 | 4.72 | 2.86 | 5.03 | 4.65 | 1.61 | 4.31 |
MgO | 5.89 | 10.50 | 14.10 | 10.94 | 14.20 | 14.29 | 8.91 | 10.33 |
MnO | 0.72 | 0.71 | 0.50 | 0.62 | 0.50 | 0.50 | 0.98 | 0.29 |
NiO | 0.19 | 0.27 | 0.15 | 0.16 | 0.15 | 0.15 | 0.15 | - |
ZnO | 0.41 | 0.16 | 0.13 | - | 0.07 | 0.14 | 0.22 | - |
CaO | 0.02 | 0.10 | 0.07 | - | - | 0.07 | 0.05 | - |
V2O5 | - | - | - | - | - | - | - | 0.13 |
Total | 98.18 | 97.54 | 98.29 | 98.31 | 98.28 | 98.22 | 98.31 | 98.13 |
N Sample | Olivine | Cr-Spinel | KD Mg-Fe2+ | T, °C | |||||
---|---|---|---|---|---|---|---|---|---|
Mg | Fe2+ | Mg | Fe2+ | Cr | Al | Fe3+ | |||
M33/1 | 0.97 | 0.03 | 0.81 | 0.19 | 0.66 | 0.23 | 0.11 | 6.41 | 1258 |
M33/2 | 0.97 | 0.03 | 0.81 | 0.19 | 0.64 | 0.23 | 0.13 | 6.37 | 1258 |
C-1616/343.4-1 | 0.93 | 0.07 | 0.62 | 0.38 | 0.74 | 0.23 | 0.03 | 8.76 | 1225 |
C-1616/343.4-2 | 0.93 | 0.07 | 0.60 | 0.40 | 0.75 | 0.23 | 0.02 | 9.50 | 1225 |
C-1612/12.2-1 | 0.89 | 0.11 | 0.52 | 0.48 | 0.66 | 0.27 | 0.08 | 7.46 | 1179 |
C-1612/12.2-3 | 0.88 | 0.12 | 0.54 | 0.46 | 0.67 | 0.27 | 0.06 | 6.29 | 1169 |
C-1612/9.8-1 | 0.87 | 0.13 | 0.30 | 0.70 | 0.56 | 0.33 | 0.11 | 16.60 | 1163 |
C-1612/9.8-3 | 0.87 | 0.13 | 0.31 | 0.69 | 0.57 | 0.32 | 0.10 | 15.42 | 1164 |
C-1612/16.1-3 | 0.87 | 0.13 | 0.33 | 0.67 | 0.59 | 0.33 | 0.08 | 14.33 | 1163 |
C-1612/16.1-4 | 0.87 | 0.13 | 0.37 | 0.63 | 0.58 | 0.32 | 0.10 | 11.82 | 1165 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mokrushin, A.V.; Smol’kin, V.F. Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals 2021, 11, 772. https://doi.org/10.3390/min11070772
Mokrushin AV, Smol’kin VF. Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals. 2021; 11(7):772. https://doi.org/10.3390/min11070772
Chicago/Turabian StyleMokrushin, Artem V., and Valery F. Smol’kin. 2021. "Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield)" Minerals 11, no. 7: 772. https://doi.org/10.3390/min11070772
APA StyleMokrushin, A. V., & Smol’kin, V. F. (2021). Chromite Mineralization in the Sopcheozero Deposit (Monchegorsk Layered Intrusion, Fennoscandian Shield). Minerals, 11(7), 772. https://doi.org/10.3390/min11070772