Research on the Mechanical Properties and Damage Constitutive Model of Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling
Abstract
:1. Introduction
2. Experimental Methodology
2.1. Rock Sample Preparation
2.2. Testing Procedure
3. Mechanical Properties of the Fractured Sandstone under Hydro-Mechanical Coupling
3.1. The Stress–Strain Law of the Fractured Sandstone during Progressive Failure
3.2. Determination of the Threshold of the Fractured Sandstone during Progressive Failure
3.3. An Analysis of the Strength Characteristics
3.4. Deformation Characteristic Analysis
4. Damage Constitutive Model and Verification of the Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling
4.1. Construction of the Damage Variable for Multi-Shape Fractured Rock
4.2. Constitutive Model Construction of Multi-Shapes Fractured Rock
4.3. Validation of the Constitutive Model under Hydro-Mechanical Coupling
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, F.; Xiong, X.; Xu, C.; Zhou, K. Mechanical property deterioration characteristics and a new constitutive model for rocks subjected to freeze-thaw weathering process. Int. J. Rock Mech. Min. Sci. 2021, 140, 104642. [Google Scholar] [CrossRef]
- Zhu, Z.N.; Tian, H.; Jiang, G.S.; Cheng, W. Effects of high temperature on the mechanical properties of Chinese marble. Rock Mech. Rock Eng. 2018, 51, 1937–1942. [Google Scholar] [CrossRef]
- Liu, Y.; Dai, F. A damage constitutive model for intermittent jointed rocks under cyclic uniaxial compression. Int. J. Rock Mech. Min. Sci. 2018, 103, 289–301. [Google Scholar] [CrossRef]
- Yilmaz, I. Influence of water content on the strength and deformability of gypsum. Int. J. Rock Mech. Min. Sci. 2010, 47, 342–347. [Google Scholar] [CrossRef]
- Vasarhelyi, B.; Ván, P.J.E.G. Influence of water content on the strength of rock. Eng. Geol. 2006, 84, 70–74. [Google Scholar] [CrossRef]
- Kou, M.; Liu, X.; Tang, S.; Wang, Y. 3-D X-ray computed tomography on failure characteristics of rock-like materials under coupled hydro-mechanical loading. Theor. Appl. Fract. Mech. 2019, 104, 102396. [Google Scholar] [CrossRef]
- Wang, H.L.; Xu, W.Y.; Shao, J.F. Experimental researches on hydro-mechanical properties of altered rock under confining pressures. Rock Mech. Rock Eng. 2014, 47, 485–493. [Google Scholar] [CrossRef]
- Wang, L.; Liu, J.F.; Pei, J.L.; Xu, H.N.; Bian, Y. Mechanical and permeability characteristics of rock under hydro-mechanical coupling conditions. Environ. Earth Sci. 2015, 73, 5987–5996. [Google Scholar] [CrossRef]
- Song, Z.; Cheng, Y.; Tian, X.; Wang, J.; Yang, T. Mechanical properties of limestone from Maixi tunnel under hydro-mechanical coupling. Arab. J. Geosci. 2020, 13, 402. [Google Scholar] [CrossRef]
- Wang, Q.; Hu, X.; Zheng, W.; Li, L.; Xu, C. Mechanical properties and permeability evolution of red sandstone subjected to hydro-mechanical coupling: Experiment and discrete element modelling. Rock Mech. Rock Eng. 2021, 54, 2405–2423. [Google Scholar] [CrossRef]
- Kawamoto, T.; Ichikawa, Y.; Kyoya, T. Deformation and fracturing behaviour of discontinuous rock mass and damage mechanics theory. Int. J. Numer. Anal. Methods Geomech. 1988, 12, 1–30. [Google Scholar] [CrossRef]
- Swoboda, G.; Shen, X.P.; Rosas, L. Damage model for jointed rock mass and its application to tunnelling. Comput. Geotech. 1998, 22, 183–203. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Xu, W.; Huang, W.; Wu, G. Experimental study on mechanical properties of multi-layered rock mass and statistical damage constitutive model under hydraulic-mechanical coupling. Eur. J. Environ. Civ. Eng. 2020. [Google Scholar] [CrossRef]
- Chen, W.L.; Li, N. Damage model of the rock mass medium with intermittent cracks. Chin. J. Geotech. Eng. 2000, 22, 430–434. [Google Scholar]
- Xu, P.; Yang, S.Q. A fracture damage constitutive model for fissured rock mass and its experimental verification. Arab. J. Geosci. 2017, 10, 164. [Google Scholar] [CrossRef]
- Chen, S.; Qiao, C. Composite damage constitutive model of jointed rock mass considering crack propagation length and joint friction effect. Arab. J. Geosci. 2018, 11, 283. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Hoek, E.; Bieniawski, Z.T. Brittle fracture propagation in rock under compression. Int. J. Fract. 1965, 1, 137–155. [Google Scholar] [CrossRef]
- Hallbauer, D.K.; Wagner, H.; Cook, N.G.W. Some observations concerning the microscopic and mechanical behaviour of quartzite samples in stiff, triaxial compression tests. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1973, 10, 713–726. [Google Scholar] [CrossRef]
- Zhao, X.G.; Cai, M.; Wang, J.; Ma, L.K. Damage stress and acoustic emission characteristics of the Beishan granite. Int. J. Rock Mech. Min. Sci. 2013, 64, 258–269. [Google Scholar] [CrossRef]
- Lajtai, E.Z. Brittle fracture in compression. Int. J. Fract. Mech. 1974, 10, 525–536. [Google Scholar] [CrossRef]
- Nicksiar, M.; Martin, C.D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mech. Rock Eng. 2012, 45, 607–617. [Google Scholar] [CrossRef]
- Zhao, X.G.; Wang, J.; Ma, L.K.; Su, R.; Cai, M.; Wang, G.B. Acoustic emission behaviors of the Beishan granite under uniaxial and triaxial compression conditions. In Proceedings of the 3rd ISRM SINOROCK Symposium, Shanghai, China, 17–21 June 2013; CRC Press/Balkema: London, UK, 2013; pp. 90–95. [Google Scholar]
- Huang, D.; Li, X.Q. Numerical simulation research on characteristic strength of marble based on development of microcrack. Rock Mech. Rock Eng. 2017, 38, 253–262. [Google Scholar]
- Ruth, D.; Ma, H. On the derivation of the Forchheimer equation by means of the averaging theorem. Transp. Porous Med. 1992, 7, 255–264. [Google Scholar] [CrossRef]
- Zhao, C.; Xing, J.Q.; Niu, J.L.; Ma, C.C. Experimental study on crack propagation of precrack rock-like samples under hydro-mechanical coupling. Chin. J. Rock Mech. Eng. 2019, 38, 2823–2830. [Google Scholar]
- Lemaitre, J. A continuous damage mechanics model for ductile fracture. J. Eng. Mater. Technol. 1985, 107, 83–89. [Google Scholar] [CrossRef]
- Lemaitre, J. How to use damage mechanics. Nucl. Eng. Des. 1984, 80, 233–245. [Google Scholar] [CrossRef]
- Lemaitre, J.; Chaboche, J.L. Mechanics of Solid Materials; Cambridge University Press: Cambridge, UK, 1990; pp. 159–168. [Google Scholar]
- Yang, T.H.; Liu, J.; Zhu, W.C.; Elsworth, D.; Tham, L.G.; Tang, C.A. A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. Int. J. Rock Mech. Min. Sci. 2007, 44, 87–97. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Drucker, D.C.; Prager, W. Soil mechanics and plastic analysis or limit design. Q. Appl. Mech. 1952, 10, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Zou, Y.G.; Wang, X.J.; Li, S.C.; Zeng, Q.; Wang, X.M.; Liu, J. Mechanical Properties and Damage Evolution Constitutive Model of Copper Oxide Rocks under Chemical Corrosion. Min. Res. Dev. 2021, 40, 56–61. [Google Scholar]
- Pan, J.L.; Cai, M.F.; Li, P.; Guo, Q.F. A damage constitutive model of rock-like materials containing a single crack under the action of chemical corrosion and uniaxial compression. J. Cent. South Univ. 2021, 29, 486–498. [Google Scholar] [CrossRef]
Fracture Inclination α | Sample No. | Confining Pressure/MPa | Water Pressure/MPa | ||
---|---|---|---|---|---|
Single Fracture | T-Shaped Fracture | Y-Shaped Fracture | |||
0° | SF0 | ST0 | SY0 | 10 | 3 |
15° | SF15 | ST15 | SY15 | 10 | 3 |
30° | SF30 | ST30 | SY30 | 10 | 3 |
45° | SF45 | ST45 | SY45 | 10 | 3 |
60° | SF60 | ST60 | SY60 | 10 | 3 |
75° | SF75 | ST75 | SY75 | 10 | 3 |
90° | SF90 | ST90 | SY90 | 10 | 3 |
Name | Sample No. | Confining Pressure/MPa | Water Pressure/MPa |
---|---|---|---|
Intact sample without water pressure | W1 | 10 | - |
Intact sample with water pressure | W2 | 10 | 3 |
Sample No. | σcc/MPa | σcd/MPa | ||||||
---|---|---|---|---|---|---|---|---|
VS | LS | CVS | VSR | Mean | SD | CoV/% | ||
W1 | 22.59 | 22.75 | 21.68 | 17.30 | 21.08 | 2.56 | 12.14% | 68.48 |
W2 | 18.17 | 24.02 | 22.23 | 16.54 | 20.24 | 3.47 | 17.14% | 53.93 |
SF0 | 10.76 | 10.71 | 10.70 | 13.62 | 11.45 | 1.45 | 12.66% | 29.07 |
SF15 | 16.46 | 19.67 | 20.26 | 19.42 | 18.95 | 1.70 | 8.97% | 38.46 |
SF30 | 10.92 | 9.89 | 9.65 | 10.33 | 10.20 | 0.56 | 5.49% | 29.14 |
SF45 | 12.89 | 13.27 | 13.38 | 13.08 | 13.16 | 0.22 | 1.67% | 33.13 |
SF60 | 12.23 | 12.74 | 14.52 | 12.31 | 12.95 | 1.07 | 8.26% | 27.82 |
SF75 | 11.55 | 12.13 | 12.93 | 12.78 | 12.35 | 0.63 | 5.10% | 26.12 |
SF90 | 12.43 | 11.76 | 12.85 | 12.10 | 12.29 | 0.47 | 3.82% | 24.96 |
ST0 | 15.86 | 16.71 | 17.11 | 13.56 | 15.81 | 1.59 | 10.06% | 38.97 |
ST15 | 12.44 | 13.87 | 13.98 | 14.11 | 13.60 | 0.78 | 5.74% | 33.77 |
ST30 | 8.86 | 8.38 | 10.50 | 8.81 | 9.14 | 2.42 | 10.18% | 27.33 |
ST45 | 7.89 | 9.91 | 8.69 | 7.59 | 8.52 | 1.04 | 12.21% | 21.66 |
ST60 | 14.84 | 14.69 | 15.14 | 15.07 | 14.94 | 0.21 | 1.41% | 31.10 |
ST75 | 16.21 | 15.58 | 15.11 | 15.32 | 15.56 | 0.48 | 3.08% | 30.13 |
ST90 | 18.64 | 17.34 | 15.77 | 19.05 | 17.70 | 1.48 | 8.36% | 43.62 |
SY0 | 16.14 | 14.62 | 15.66 | 15.99 | 15.60 | 0.69 | 4.42% | 29.73 |
SY15 | 15.77 | 16.13 | 16.31 | 14.91 | 15.78 | 0.62 | 3.93% | 40.46 |
SY30 | 14.77 | 15.48 | 15.53 | 14.87 | 15.16 | 0.40 | 2.64% | 34.63 |
SY45 | 15.57 | 16.46 | 17.32 | 15.27 | 16.16 | 0.93 | 5.75% | 38.02 |
SY60 | 10.43 | 10.91 | 11.51 | 11.14 | 11.00 | 0.45 | 4.09% | 27.89 |
SY75 | 15.50 | 15.58 | 15.31 | 15.02 | 15.35 | 0.25 | 1.63% | 37.40 |
SY90 | 16.63 | 15.82 | 17.54 | 16.36 | 16.59 | 0.72 | 4.34% | 43.00 |
Sample No. | σci/MPa | σc/MPa | |||||||
---|---|---|---|---|---|---|---|---|---|
VS | LS | CVS | LSR | VSR | Mean | SD | Cov/% | ||
W1 | 33.47 | 33.69 | 26.33 | 39.60 | 32.63 | 33.14 | 4.71 | 14.21% | 97.54 |
W2 | 25.76 | 31.17 | 29.12 | 31.39 | 28.22 | 29.13 | 2.32 | 7.96% | 92.42 |
SF0 | 15.35 | 14.03 | 16.98 | 13.68 | 17.83 | 15.57 | 1.81 | 11.62% | 78.73 |
SF15 | 24.38 | 25.31 | 24.16 | 22.07 | 24.18 | 24.02 | 1.19 | 4.95% | 67.70 |
SF30 | 14.72 | 15.34 | 14.18 | 14.86 | 15.17 | 14.85 | 0.45 | 3.03% | 57.04 |
SF45 | 17.26 | 17.62 | 17.04 | 17.71 | 17.66 | 17.46 | 0.29 | 1.66% | 60.92 |
SF60 | 15.59 | 16.72 | 17.16 | 16.76 | 16.37 | 16.52 | 0.59 | 3.57% | 58.15 |
SF75 | 15.17 | 15.23 | 15.46 | 14.66 | 15.86 | 15.28 | 0.44 | 2.88% | 54.32 |
SF90 | 15.88 | 16.03 | 16.97 | 16.48 | 15.82 | 16.24 | 0.48 | 2.96% | 61.99 |
ST0 | 20.43 | 21.16 | 19.58 | 20.41 | 20.90 | 20.50 | 0.60 | 2.93% | 63.51 |
ST15 | 19.02 | 19.46 | 20.32 | 14.16 | 19.22 | 18.44 | 2.44 | 13.23% | 64.58 |
ST30 | 12.66 | 13.44 | 16.63 | 11.36 | 13.93 | 13.60 | 1.95 | 14.34% | 52.58 |
ST45 | 13.08 | 13.69 | 14.21 | 13.59 | 14.25 | 13.76 | 0.48 | 3.49% | 59.19 |
ST60 | 20.57 | 21.21 | 21.15 | 22.01 | 20.64 | 21.12 | 0.58 | 2.75% | 51.47 |
ST75 | 22.03 | 19.93 | 21.28 | 22.27 | 21.52 | 21.41 | 0.91 | 4.25% | 55.83 |
ST90 | 23.01 | 23.09 | 20.70 | 24.17 | 24.00 | 22.99 | 1.38 | 6.00% | 62.41 |
SY0 | 20.16 | 19.96 | 20.52 | 20.09 | 20.03 | 20.15 | 0.22 | 1.09% | 54.77 |
SY15 | 22.27 | 23.75 | 21.89 | 25.03 | 22.40 | 23.07 | 1.30 | 5.64% | 60.56 |
SY30 | 22.40 | 21.13 | 22.13 | 22.43 | 22.32 | 22.08 | 0.54 | 2.45% | 55.53 |
SY45 | 21.44 | 21.87 | 23.82 | 22.73 | 23.03 | 22.58 | 0.94 | 4.16% | 55.29 |
SY60 | 15.22 | 15.10 | 17.98 | 15.01 | 17.55 | 16.17 | 1.46 | 9.03% | 54.33 |
SY75 | 22.18 | 23.75 | 20.55 | 23.91 | 20.07 | 22.09 | 1.77 | 8.01% | 61.18 |
SY90 | 21.92 | 21.20 | 22.32 | 24.48 | 22.12 | 22.41 | 1.23 | 5.49% | 54.70 |
Sample No. | Peak Stress/MPa | Peak Strain/% | Total Damage Variable | Weibull Parameters | |
---|---|---|---|---|---|
n | F0 | ||||
SF0 | 78.73 | 0.639 | 0.276 | 6.011 | 98.363 |
SF15 | 67.70 | 0.568 | 0.300 | 5.027 | 89.403 |
SF30 | 57.04 | 0.490 | 0.317 | 4.487 | 78.190 |
SF45 | 60.92 | 0.572 | 0.375 | 3.204 | 93.988 |
SF60 | 58.15 | 0.525 | 0.348 | 3.705 | 85.349 |
SF75 | 54.32 | 0.552 | 0.422 | 2.562 | 90.946 |
SF90 | 61.99 | 0.637 | 0.429 | 2.482 | 105.014 |
ST0 | 63.51 | 0.531 | 0.303 | 5.102 | 83.475 |
ST15 | 64.58 | 0.499 | 0.240 | 8.543 | 73.265 |
ST30 | 52.58 | 0.426 | 0.275 | 6.077 | 65.484 |
ST45 | 59.19 | 0.454 | 0.237 | 8.869 | 66.312 |
ST60 | 51.47 | 0.553 | 0.453 | 2.240 | 90.513 |
ST75 | 55.83 | 0.412 | 0.208 | 13.289 | 57.208 |
ST90 | 62.41 | 0.654 | 0.440 | 2.371 | 107.467 |
SY0 | 54.77 | 0.580 | 0.446 | 2.313 | 95.205 |
SY15 | 60.56 | 0.469 | 0.241 | 8.445 | 68.898 |
SY30 | 55.53 | 0.423 | 0.230 | 9.653 | 61.149 |
SY45 | 55.29 | 0.407 | 0.202 | 14.633 | 55.831 |
SY60 | 54.33 | 0.403 | 0.208 | 13.207 | 55.929 |
SY75 | 61.18 | 0.452 | 0.205 | 13.821 | 62.438 |
SY90 | 54.70 | 0.385 | 0.169 | 41.941 | 48.072 |
Source | Constitutive Model | Elastic Modulus Relative Error | Peak Strength Relative Error | Applicable Conditions |
---|---|---|---|---|
Reference [34] | 13% | 2% | Chemical damage, intact rock, uniaxial | |
Reference [16] | 41% | 6% | Fractured rock, uniaxial | |
Reference [35] | 2% | 1% | Chemical damage, fractured rock, uniaxial | |
This article | 1.8% | 0.8% | Water damage, fractured rock, triaxial |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, X.; Guo, Q.; Zhang, Z.; Cai, M.; Tian, L. Research on the Mechanical Properties and Damage Constitutive Model of Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling. Minerals 2022, 12, 436. https://doi.org/10.3390/min12040436
Zhang Y, Wu X, Guo Q, Zhang Z, Cai M, Tian L. Research on the Mechanical Properties and Damage Constitutive Model of Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling. Minerals. 2022; 12(4):436. https://doi.org/10.3390/min12040436
Chicago/Turabian StyleZhang, Ying, Xu Wu, Qifeng Guo, Zhaohong Zhang, Meifeng Cai, and Limei Tian. 2022. "Research on the Mechanical Properties and Damage Constitutive Model of Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling" Minerals 12, no. 4: 436. https://doi.org/10.3390/min12040436
APA StyleZhang, Y., Wu, X., Guo, Q., Zhang, Z., Cai, M., & Tian, L. (2022). Research on the Mechanical Properties and Damage Constitutive Model of Multi-Shape Fractured Sandstone under Hydro-Mechanical Coupling. Minerals, 12(4), 436. https://doi.org/10.3390/min12040436