Fulvic Acid from Chestnut Forest as an Added Qualities to Spring Water: Isolation and Characterization from Fiuggi Waters
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Area of Study, Water, and Soil Sampling
2.2. Soil Sample Preparation and Physical-Chemical Characterization
2.3. Isolation of Fulvic Acid from Soil
2.4. Isolation of Aquatic Fulvic Acids
2.5. Pyrolysis-GC-MS Analysis
2.6. NMR Analysis
2.7. FTIR Analysis
3. Results
3.1. Physico-Chemical Characteristics of Soils
3.2. FTIR
3.3. NMR
3.4. Pyrolysis-GC-MS
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leonardi, A.; Masiero, M.; Meier, L. Forests and Water, Valuation and payments for forest ecosystem services. In UNECE/FAO Forestry and Timber Section; United Nations Publication: Geneve, Switzerland, 2018. [Google Scholar]
- Bellver-Domingo, A.; Hernández-Sancho, F.; Molinos-Senante, M. A review of Payment for Ecosystem Services for the economic internalization of environmental externalities: A water perspective. Geoforum 2016, 70, 115–118. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Prestininzi, A.; Ludovici, G. Ecosystem of the Anticolana Valley. Nephron 1999, 81, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, M.; Schaap, B. Forest ecosystem services. Background study prepared for the thirteenth session of the United Nations Forum on Forests. In United Nations Forum on Forests; UN Press: New York, NY, USA, 2018. [Google Scholar]
- Carta dei Suoli del Lazio—Scala 1:250.000—v. 2019. Tutela Risorse e Vigilanza sulle Produzioni di Qualità. Available online: http://dati.lazio.it/catalog/it/dataset/carta-dei-suoli-del-lazio-1-250-000-ed-2019/resource/b27732c7-05cc-4447-8dac-386d1fbcf829 (accessed on 27 July 2019).
- Calace, N.; Petronio, B.M.; de Angelis Curtis, S.; Fraioli, A.; Delfini, M.; D’Ascenzo, G. Chemical analysis of water of the Anticolana Valley: Isolation of humic compounds. Nephron 1999, 81, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Freitas, T.R.; Santos, J.A.; Silva, A.P.; Fraga, H. Influence of Climate Change on Chestnut Trees: A Review. Plants 2021, 10, 1463, Erratum in Plants 2022, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Regional Council Resolution 158/2016. In Adozione delle Misure di Conservazione finalizzate alla designazione delle zone speciali di conservazione (ZSC) ai sensi della Direttiva 92/43/CEE (Habitat) e del DPR 357/97 e s.m.i.—codice IT 60500; Regione Lazio: Frosinone, Italy.
- Fraioli, A.; De Angelis Curtis, S.; Ricciuti, G.; Serio, A.; D’Ascenzo, G. Effect of water of Anticolana Valley on urinary sediment of renal stone formers. La Clin. Ter. 2001, 152, 347–351. [Google Scholar] [PubMed]
- Di Silverio, F.; Ricciuti, G.P.; D’Angelo, A.R.; Fraioli, A.; Simeoni, G. Stone recurrence after lithotripsy in patients with recurrent idiopathic calcium urolithiasis: Efficacy of treatment with fiuggi water. Eur. Urol. 2000, 37, 145–148. [Google Scholar] [CrossRef] [PubMed]
- Davydova, N.K.; Sergeev, V.N.; Girbul, E. The role of humous acids in acqua di Fiuggi mineral water in degrading stones formed in the urinary tract (Review). Pharm. Chem. J. 2014, 48, 587–592. [Google Scholar] [CrossRef]
- MacCarthy, P. The principles of humic substances. Soil Sci. 2001, 166, 738–751. [Google Scholar] [CrossRef]
- Rashad, M.; Hafez, M.; Popov, A.I. Humic substances composition and properties as an environmentally sustainable system: A review and way forward to soil conservation. J. Plant Nutr. 2022, 45, 1072–1122. [Google Scholar] [CrossRef]
- Simpson, A.J.; Kingery, W.L.; Hayes, M.H.B.; Spraul, M.; Humpfer, E.; Dvortsak, P.; Kerssebaum, R.; Godejohann, M.; Hofmann, M. Molecular structures and associations of humic substances in the terrestrial environment. Naturwissenschaften 2002, 89, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; Dias, N.D.S.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef]
- Sutton, R.; Sposito, G. Molecular structure in soil humic substances: The New View. Environ. Sci. Technol. 2005, 39, 9009–9015. [Google Scholar] [CrossRef] [PubMed]
- Pettit, R.E. Organic matter, humus, humate, humic acid, fulvic acid and humin: Their importance in soil fertility and plant health. CTI Res. 2004, 10, 1–7. [Google Scholar]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification; Taylor & Francis: London, UK, 1995. [Google Scholar]
- Lodygin, E.D.; Beznosikov, V.A. The molecular structure and elemental composition of humic substances from Albeluvisols. Chem. Ecol. 2010, 26, 87–95. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Gerzabek, M.H.; Aquino AJ, A.; Balboa YI, E.; Galicia-Andrés, E.; Grančič, P.; Oostenbrink, C.; Tunega, D. A contribution of molecular modeling to supramolecular structures in soil organic matter#. J. Plant Nutr. Soil Sci. 2020, 185, 44–59. [Google Scholar]
- Piccolo, A.; Nardi, S.; Cancheri, G. Macromolecular changes of soil humic substances induced by interactions with organic acids. Eur. J. Soil Sci. 1996, 47, 319–328. [Google Scholar] [CrossRef]
- Piccolo, A.; Nardi, S.; Cancheri, G. Micelle like conformation of humic substances as revealed by size-exclusion chromatography. Chemosphere 1996, 33, 595–600. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolcular structure of humic substances. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef]
- Piccolo, A. The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Ukalska-Jaruga, A.; Debaene, G.; Smreczak, B. Particle and structure characterization of fulvic acids from agricultural soils. J. Soils Sediments 2018, 18, 2833–2843. [Google Scholar] [CrossRef]
- Thurman, E.M. Isolation, Characterization, and Geochemical Significance of Humic Substances from Ground Waters. Ph.D. Thesis, University of Colorado, Boulder, CO, USA, 1979. [Google Scholar]
- Albertini, M.C.; Dachà, M.; Teodori, L.; Conti, M.E. Drinking mineral waters: Biochemical effects and health implications - The state-of-the-art. Int. J. Environ. Health 2007, 1, 153–169. [Google Scholar] [CrossRef]
- Marabottini, R.; Stazi, S.R.; Papp, R.; Grego, S.; Moscatelli, M.C. Mobility and distribution of arsenic in contaminated mine soils and its effects on the microbial pool. Ecotoxicol. Environ. Saf. 2013, 96, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Stazi, S.R.; IMancinelli, R.; Marabottini, R.; Allevato, E.; Radicetti, E.; Campiglia, E.; Marinari, S. Influence of organic management on As bioavailability: Soil quality and tomato As uptake. Chemosphere 2018, 211, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Gillman, G.P. A proposed method for the measurement of exchange properties of highly weathered soils. Aust. J. Soil Res. 1979, 17, 129–139. [Google Scholar] [CrossRef]
- Loeppert, R.H.; Suarez, D.L. Carbonate and Gypsum. In Methods of Soil Analysis; Sparks, D., Page, A., Helmke, P., Loeppert, R., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America Book Series, no. 5; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar] [CrossRef]
- Hayes, M.B.H. Extraction of Humic Substances from Soil. In Humic Substances in Soil, Sediment, and Water: Geochemistry, Isolation, and Characterization; Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P., Eds.; Wiley-Interscience: New York, NY, USA, 1985; pp. 329–362. [Google Scholar]
- Swift, R.S. Fractionation of Soil Humic Substances. In Humic Substances in Soil, Sediment and Water; Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P., Eds.; Willey: New York, NY, USA, 1985; pp. 387–408. [Google Scholar]
- Aiken, G.R. Isolation and Concentration Techniques for Aquatic Humic Substances. In Humic Substances in Soil, Sediment and Water: Geochemistry and Isolation; Aiken, G.R., McKnight, D.M., Wershaw, R.L., MacCarthy, P., Eds.; Wiley-Interscience: New York, NY, USA, 1985. [Google Scholar]
- Thurman, E.M.; Malcolm, R.L. Preparative isolation of aquatic humic substances. Environ. Sci. Technol. 1981, 15, 463–466. [Google Scholar] [CrossRef]
- Gigliotti, G.; Macchioni, A.; Zuccaccia, C.; Giusquiani, P.L.; Businelli, D. A spectroscopic study of soil fulvic acid composition after six-year applications of urban waste compost. Agronomie 2003, 23, 719–724. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, and Reactions; John Willey and Sons: New York, NY, USA, 1994. [Google Scholar]
- Moraes, G.M.; Xavier, F.A.S.; Mendonça, E.S.; Araújo Filho, J.A.; Oliveira, T.S. Chemical and structural characterization of soil humic substances under agroforestry and conventional systems. Rev. Bras. Cien. Solo. 2011, 35, 1597–1608. [Google Scholar] [CrossRef]
- Machado, W.; Franchini, J.C.; de Fátima Guimarães, M.; Filho, J.T. Spectroscopic characterization of humic and fulvic acids in soil aggregates, Brazil. Heliyon 2020, 6, e04078. [Google Scholar] [CrossRef] [PubMed]
- Haiber, S.; Herzog, H.; Burba, P.; Gosciniak, B.; Lambert, J. Two-dimensional NMR studies of size fractionated Suwannee River fulvic and humic acid reference. Environ. Sci. Technol. 2001, 35, 4289–4294. [Google Scholar] [CrossRef] [PubMed]
- Albers, C.N.; Hansen, P.E. 13C-NMR chemical shift databases as a quick tool to evaluate structural models of humic substances. Open Magn. Reson. J. 2010, 3, 96–105. [Google Scholar] [CrossRef]
- Wu, M.; Song, M.; Liu, M.; Jiang, C.; Li, Z. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci. Rep. 2016, 6, 32858. [Google Scholar] [CrossRef] [PubMed]
- Martín, F.; del Rio, J.C.; González-Vila, F.J.; Verdejo, T. Pyrolysis derivatization of humic substances II: Pyrolysis of soil humic acids in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 1995, 31, 75–83. [Google Scholar] [CrossRef]
- Martín, F.; González-Vila, F.J.; del Rio, J.C.; Verdejo, T. Pyrolysis derivatization of humic substances 1: Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. J. Anal. Appl. Pyrolysis 1994, 28, 71–80. [Google Scholar] [CrossRef]
- Del Rio, J.C.; Hatcher, P.G. Analysis of aliphatic biopolymers using thermochemolysis with tetramethylammonium hy-droxide (TMAH) and gas chromatography—Mass spectrometry. Org. Geochem. 1998, 29, 1441–1451. [Google Scholar] [CrossRef]
- Santos Bento, M.F.; Pereira, H.; Cunha, M.Á.; Moutinho, A.M.C.; van den Berg, K.J.; Boon, J.J. A study of variability of suberin composition in cork from Quercus suber L. using thermally assisted transmethylation GC—MS. J. Anal. Appl. Pyrolysis 2001, 57, 45–55. [Google Scholar] [CrossRef]
- Nierop, K.G.J. Origin of aliphatic compounds in a forest soil. Org. Geochem. 1998, 29, 1009–1016. [Google Scholar] [CrossRef]
- Nierop, K.G.J.; Pulleman, M.M.; Marinissen, J.C.Y. Management induced organic matter differentiation in grassland and arable soil: A study using pyrolysis techniques. Soil Biol. Biochem. 2001, 33, 755–764. [Google Scholar] [CrossRef]
- Quénéa, K.; Derenne, S.; Largeau, C.; Rumpel, C.; Mariotti, A. Spectroscopic and pyrolytic features and abundance of the macromolecular refractory fraction in a sandy acid forest soil (Landes de Gascogne, France). Org. Geochem. 2005, 36, 349–362. [Google Scholar] [CrossRef]
- Hatcher, P.G.; Clifford, D.J. Flash pyrolysis and in situ methylation of humic acids from soil. Org. Geochem. 1994, 21, 1081–1092. [Google Scholar] [CrossRef]
- Amir, S.; Hafidi, M.; Lemee, L.; Bailly, J.-R.; Merlina, G.; Kaemmerer, M.; Revel, J.-C.; Amble, A. Structural characterization of fulvic acids, extracted from sewage sludge during composting, by thermochemolysis–gas chromatography–mass spectrometry. J. Anal. Appl. Pyrolysis 2006, 77, 149–158. [Google Scholar] [CrossRef]
- Saiz-Jimenez, C. Origin and Chemical Nature of Soil Organic Matter. Ph.D. Thesis, Delft University Press, Delft, The Nederland, 1988. [Google Scholar]
- Guggenberger, G.; Zech, W. Dissolved organic carbon in forest floor leachates: Simple degradation products or humic substances? Sci. Total Environ. 1994, 152, 37–47. [Google Scholar] [CrossRef]
- Schnitzer, M.; Schulten, H.R. New Ideas on the Chemical Make-up of Soil Humic and Fulvic Acids. In Future Prospects for Soil Chemistry; Soil Science Society of America: Madison, WI, USA, 1998; Volume 55, pp. 153–177. [Google Scholar]
- van Bergen, P.F.; Flannery, M.B.; Poulton, P.R.; Evershed, R.P. Organic Geochemical Studies of Soils from the Rothamsted Classical Experiments. III: Nitrogen-Containing Macromolecular Moieties in Soil Organic Matter from Geescroft Wilderness. In Nitrogen-Containing Macromolecules in the Bio and Geosphere; Stankiewicz, B.A., van Bergen, P.F., Eds.; ACS Symposium Series, 707; Oxford University Press: New York, NY, USA, 1988; pp. 321–338. [Google Scholar]
- Tulloch, A.P. Chemistry of Waxes of Higher Plants. In Chemistry and Biochemistry of Natural Waxes; Chemistry and Biochemistry of Natural Waxes; Kolattukudy, P.E., Ed.; Elsevier: Amsterdam, The Netherlands; New York, NY, USA, 1976; pp. 235–287. [Google Scholar]
- Walton, T.J. Waxes, Cutin and Suberin. In Lipids, Membranes and Aspects of Photobiology; Methods in plant biochemistry; Harwood, J.L., Bowyer, J.R., Eds.; Academic Press: New York, NY, USA, 1990; Volume 4, pp. 105–158. [Google Scholar]
- Kolattukudy, P. Biochemistry and function of cutin and suberin. Can. J. Bot. 1984, 62, 2918–2933. [Google Scholar] [CrossRef]
- González-Vila, F.J.; Lankes, U.; Lüdemann, H.D. Comparison of the information gained by pyrolytic techniques and NMR spectroscopy on the structural features of aquatic humic substances. J. Anal. Appl. Pyrolysis 2001, 58, 349–359. [Google Scholar] [CrossRef]
Parameters | Quarto d’Anagni | Quarto Le Prata | Le Cese |
---|---|---|---|
Clay (%) | 28 | 30 | 42 |
Silt (%) | 40 | 38 | 36 |
Sand (%) | 32 | 32 | 22 |
Texture class (USDA) | Clay loam | Clay loam | Clay |
Electrical conductivity (µs Cm−1) | 858.75 ± 5.047 | 995.00 ± 20.21 | 545.00 ± 55.15 |
Total limestone (%) | <LD | <LD | <LD |
pH (H2O) | 5.8 ± 0.3 | 5.2 ± 0.1 | 4.9 ± 0.1 |
pH (KCl) | 5.4 ± 0.3 | 4.6 ± 0.1 | 4.1 ± 0.1 |
TOC (g kg−1) | 46.5 ± 0.87 | 39.2 ± 0.26 | 37.2± 0.39 |
TN (g kg−1) | 3.61 ± 0.36 | 3.02 ± 0.18 | 3.13 ± 0.53 |
C/N ratio | 12.80 ± 1.14 | 13.00 ± 0.10 | 11.96 ± 0.76 |
C.E.C. (Cmol(+)kg−1) | 44.69 ± 0.57 | 34.22 ± 0.78 | 39.38 ± 1.31 |
Soil | FA (g kg−1) |
---|---|
Quarto d’Anagni | 5.2 ± 0.02 |
Quarto le Prata | 6.2 ± 0.04 |
Le Cese | 5.6 ± 0.04 |
0–1.7 ppm | 1.7–3.0 ppm | 3.0–5.0 ppm | 5.0–6.5 ppm | 6.5–9.0 ppm | 9.0–12.0 ppm | |
---|---|---|---|---|---|---|
sample | Alkyl-H | Alkyl-H | Carbohydrate-H | Olefin-H | Aromatic-H | Aldehyde-H |
water | 8 | 10 | 8 | 1.5 | 72 | 0.5 |
soil | 13.5 | 25 | 18.5 | 3 | 39.5 | 0.5 |
0–50 ppm | 50–110 ppm | 110–165 ppm | 165–190 ppm | 190–210 ppm | |
---|---|---|---|---|---|
sample | Aliphatic-C | O-Alkyl-C | Aromatic-C | Carboxylic-C | Ketonic-C Aldehydic-C |
water | 8 | 3 | 84 | 2 | 3 |
soil | 6 | 4 | 63 | 26 | 1 |
Retention Time (min) | Name | Class of Compound |
---|---|---|
3.367 | Toluene | aromatic |
5.772 | Ethylbenzene | aromatic |
6.559 | Styrene | aromatic |
7.261 | Benzene, methoxy- | aromatic |
8.917 | Hexahydro-1,3,5-Trimethyl-s-triazine | heterocycl |
9.101 | Phenol | aromatic |
10.111 | 2-Ethyl-4-methylpentanol | alcohol |
10.191 | Butanedioic acid, dimethyl ester | dicarboxylic acid |
11.358 | Benzene, (methylthio)- | aromatic |
11.608 | Benzoic acid, methyl ester | aromatic carboxylic acid |
11.809 | Methanethioamide | Thioamide |
14.096 | Benzoic acid, 4-methyl-, methyl ester | aromatic carboxylic acid |
19.580 | Dodecanoic acid, methyl ester | carboxylic acid |
20.690 | Benzoic acid, 3,4-dimethoxy-, methyl ester | aromatic carboxylic acid |
22.333 | 10-Undecenoic acid, methyl ester | monounsaturated carboxylic acid |
22.628 | Methyl tetradecanoate | carboxylic acid |
23.326 | 2-Propenoic acid | carboxylic acid |
23.644 | Octadecanoic acid, methyl ester | carboxylic acid |
24.040 | Pentadecanoic acid, methyl ester | carboxylic acid |
25.088 | 9-Hexadecenoic acid, methyl ester, | carboxylic acid |
25.391 | Hexadecanoic acid, methyl ester | carboxylic acid |
26.018 | 13-Docosenoic acid, methyl ester | carboxylic acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allevato, E.; Vinciguerra, V.; Stazi, S.R.; Carbone, F.; Zuccaccia, C.; Nano, G.; Marabottini, R. Fulvic Acid from Chestnut Forest as an Added Qualities to Spring Water: Isolation and Characterization from Fiuggi Waters. Minerals 2022, 12, 1019. https://doi.org/10.3390/min12081019
Allevato E, Vinciguerra V, Stazi SR, Carbone F, Zuccaccia C, Nano G, Marabottini R. Fulvic Acid from Chestnut Forest as an Added Qualities to Spring Water: Isolation and Characterization from Fiuggi Waters. Minerals. 2022; 12(8):1019. https://doi.org/10.3390/min12081019
Chicago/Turabian StyleAllevato, Enrica, Vittorio Vinciguerra, Silvia Rita Stazi, Francesco Carbone, Cristiano Zuccaccia, Giuseppe Nano, and Rosita Marabottini. 2022. "Fulvic Acid from Chestnut Forest as an Added Qualities to Spring Water: Isolation and Characterization from Fiuggi Waters" Minerals 12, no. 8: 1019. https://doi.org/10.3390/min12081019
APA StyleAllevato, E., Vinciguerra, V., Stazi, S. R., Carbone, F., Zuccaccia, C., Nano, G., & Marabottini, R. (2022). Fulvic Acid from Chestnut Forest as an Added Qualities to Spring Water: Isolation and Characterization from Fiuggi Waters. Minerals, 12(8), 1019. https://doi.org/10.3390/min12081019