New Insights into the Gold Mineralization in the Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt, Eastern Indian Shield Using Magnetic, Very Low-Frequency Electromagnetic (VLF-EM), and Self-Potential Data
Abstract
:1. Introduction
2. Geological Setting
3. Methodology
3.1. Magnetic Method
3.2. Very Low-Frequency (VLF) Electromagnetic (EM) Method
3.3. Self-Potential (SP) Method
3.4. Inversion of SP Data
3.4.1. Particle Swarm Optimization (PSO) Algorithm
3.4.2. Very Fast Simulated Annealing (VFSA) Algorithm
3.4.3. Genetic Algorithm (GA)
4. Results and Discussions
4.1. Petrography and Ore Mineralogy
4.2. Magnetic Method
4.3. Very Low-Frequency (VLF) Electromagnetic (EM) Method
4.4. Results of SP Inversion
4.4.1. Particle Swarm Optimization (PSO) Algorithm
4.4.2. Very Fast Simulated Annealing (VFSA) Algorithm
4.4.3. Genetic Algorithm (GA)
4.4.4. Comparisons of Inverted SP Models Based on PSO, VFSA, and GA Algorithms
5. Conclusions
- The study of photomicrographs under reflected/transmitted light and SEM-BSE images reveals the presence of gold in the quartz reef along with pyrrhotite, sphalerite, and chalcopyrite.
- The photomicrographs of quartz samples provide evidence of shear/fracture with alternate coarse and fine quartz grains.
- The magnetic survey reveals that mineralized areas fall within fracture zones with low magnetic anomaly values.
- The Euler depth solution of magnetic data indicates that the favorable depth of the causative bodies lies between 15 m and 35 m, which corroborates with the 25 to 40 m depth derived using RAPS of the magnetic data.
- The VLF-EM analysis proposes the sulfide/gold mineralization in the depth range of ~1 to 40 m (Borehole BKB-1).
- The quantitative analysis of PSO, VFSA, and GA indicates that PSO provides a more suitable target depth and location with minimal misfit.
- A comprehensive study of magnetic, SP, and VLF-EM data delineates the possible extension of BBA with a depth of the auriferous sulfide minerals ranging between 3 and 40 m that corroborates with Borehole BKB-1.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grooves, D.I.; Phillips, G.N. The Genesis and Tectonic Control on the Archaean Gold Deposits of the Western Austrian Shield: A Metamorphic replacement Model. Ore Geol. Rev. 1987, 2, 287–322. [Google Scholar] [CrossRef]
- Colvine, A.C. An Empirical Model for the Formation of Archaean Gold Deposits; Final Products of Cratonization of the Superior Province, Canada. Econ. Geol. Monogr. 1989, 6, 37–53. [Google Scholar]
- Madhusudan, I.C.; Maiti, S.K.; De, M.K.; Singh, A.; Das, P.C. Geophysical studies of Tamar Gold Prospect, Babaikundi-Birgaon Sector, District Ranchi, Bihar. Ind. Min. 1999, 53, 37–44. [Google Scholar]
- Macnae, J.C. Kimberlites and exploration geophysics. Geophysics 1979, 44, 1395–1416. [Google Scholar] [CrossRef]
- Smith, R.J. Geophysics of Iron Oxide Copper-Gold Deposits Hydrothermal Iron Oxide Copper–Gold and Related Deposits: A Global Perspective. PGC Publ. 2002, 2, 357–367. [Google Scholar]
- Biswas, A.; Sharma, S.P. Optimization of Self-Potential interpretation of 2-D inclined sheet-type structures based on Very Fast Simulated Annealing and analysis of ambiguity. J. Appl. Geophys. 2014, 105, 235–247. [Google Scholar] [CrossRef]
- Biswas, A.; Sharma, S.P. Interpretation of self-potential anomaly over idealized body and analysis of ambiguity using very fast simulated annealing global optimization. Near Surf. Geophys. 2015, 13, 179–195. [Google Scholar] [CrossRef]
- Biswas, A. A comparative performance of Least Square method and Very Fast Simulated Annealing Global Optimization method for interpretation of Self-Potential anomaly over 2-D inclined sheet type structure. J. Geol. Soc. India 2016, 88, 493–502. [Google Scholar] [CrossRef]
- Horo, D.; Pal, S.; Singh, S.; Srivastava, S. Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi-Birgaon Axis, North Singhbhum Mobile Belt, India. Explor. Geophys. 2020, 51, 507–522. [Google Scholar] [CrossRef]
- Horo, D.; Pal, S.; Singh, S. Mapping of Gold Mineralization in Ichadih, North Singhbhum Mobile Belt, India Using Electrical Resistivity Tomography and Self-Potential Methods. Min. Metall. Explor. 2021, 38, 397–411. [Google Scholar] [CrossRef]
- Vacquier, V.; Holmes, C.R.; Kintzinger, P.R.; Lavergne, M. Prospecting for Groundwater by Induced Electrical Polarisation. Geophysics 1957, 23, 660–687. [Google Scholar] [CrossRef]
- Klein, J.D.; Sill, W.R. Electrical properties of artificial clay bearing sandstone. Geophysics 1982, 47, 1593–1605. [Google Scholar] [CrossRef]
- Towel, J.N.; Anderson, R.G.; Pelton, W.H.; Olhoeft, G.R.; LaBrecque, D. Direct Detection of Hydrocarbon Contaminants using Induced Polarisation Method: SEG Meeting. In Proceedings of the 1985 SEG Annual Meeting, Washington, DC, USA, 6–10 October 1985; pp. 145–147. [Google Scholar]
- Sesha Sai, V.V. A Report on Exploration for Gold in Babaikundi-Birgaon Sector, District Ranchi; Unpublished Program Report of GSI F.S. 1995–1996; Geological Survey of India: Bihar, India, 1998.
- Maiti, S.K.; De, M.K.; Singh, A.; Das, P.C. A Report on Geophysical Studies of the Babaikundi-Birgaon Sector, Tamar Gold Prospect, District Ranchi, Bihar (F.S. 1997–1998); Geological Survey of India: Bihar, India, 1999.
- Jha, V.; Singh, S.; Venkatesh, A.S. Invisible gold occurrences within the quartz reef of Babaikundi area, North Singhbhum fold-and-thrust belt, Eastern Indian Shield: Evidence from petrographic, SEM and EPMA studies. Ore Geol. Rev. 2015, 65, 426–432. [Google Scholar] [CrossRef]
- Sarkar, S.N.; Saha, A.K. A revision of Precambrian stratigraphy and tectonics of Singhbhum and adjacent regions. Q. J. Geol. Min. Metall. Soc. India 1962, 34, 97–136. [Google Scholar]
- Saha, A.K. Crustal evolution of Singhbhum-North Orissa, Eastern India. Mem. Geol. Soc. Ind. 1994, 27, 341. [Google Scholar]
- Chandan, K.K.; Jha, V.; Roy, S.; Khatun, M.; Sahoo, P.R.; Singh, S. Ore microscopic study of the gold mineralisation within Chandil Formation, North Singhbhum Mobile Belt, Eastern India. Int. J. Earth Sci. Eng. 2014, 6, 213–222. [Google Scholar]
- Misra, S.; Johnson, P.T. Geochronological Constraints on Evolution of Singhbhum Mobile Belt and Associated Basic Volcanics of Eastern Indian Shield. Gondwana Res. 2005, 8, 129–142. [Google Scholar] [CrossRef]
- Mahato, S.; Goon, S.; Bhattacharya, A.; Mishra, B.; Bernhardt, H.-J. Thermo-tectonic evolution of the North Singhbhum Mobile Belt (eastern India): A view from the western part of the belt. Precambrian Res. 2008, 162, 102–127. [Google Scholar] [CrossRef]
- Park, J.O.; You, Y.J.; Kim, H.J. Electrical resistivity surveys for gold-bearing veins in the Yongjang mine, Korea. J. Geophys. Eng. 2009, 6, 73–81. [Google Scholar] [CrossRef]
- Fon, A.N.; Bih Che, V.; Emmanuel Suh, C. Application of Electrical Resistivity and Chargeability Data on a GIS Platform in Delineating Auriferous Structures in a Deeply Weathered Lateritic Terrain, Eastern Cameroon. Int. J. Geosci. 2012, 3, 960–971. [Google Scholar] [CrossRef]
- Sato, M.; Mooney, H.M. The electrochemical mechanism of sulfide self–potentials. Geophysics 1960, 25, 226–249. [Google Scholar] [CrossRef]
- Corry, C.E. Spontaneous polarisation associated with porphyry sulphide mineralisation. Geophysics 1985, 50, 1020–1034. [Google Scholar] [CrossRef]
- Sharma, S.P.; Baranwal, V.C. Delineation of groundwater bearing fracture zones in a hard rock area integrating very low frequency electromagnetic and resistivity data. J. Appl. Geophys. 2005, 57, 155–166. [Google Scholar] [CrossRef]
- Mehanee, A.S. Tracing of paleo-shear zones by self-potential data inversion: Case studies from the KTB, Rittsteig, and Grossensees graphite-bearing fault planes. Earth Planets Space 2015, 67, 14–47. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K. Underground coalfire mapping using analysis of self-potential (SP) data collected from Akashkinaree Colliery, Jharia coalfield, India. J. Geol. Soc. India 2020, 95, 350–358. [Google Scholar] [CrossRef]
- Phillips, W.J.; Richards, W.E. A study of the effectiveness of the VLF method for the location of narrow-mineralized fault zones. Geoexploration 1975, 13, 215–226. [Google Scholar] [CrossRef]
- Irvine, R.J.; Smith, M.J. Geophysical exploration for epithermal gold deposits. J. Geochem. Explor. 1990, 36, 375–412. [Google Scholar] [CrossRef]
- Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Guo, W.W.; Li, Z.X.; Dentith, M.C. Magnetic petrophysical results from the Hamersley Basin and their implications for interpretation of magnetic surveys. Aust. J. Earth Sci. 2011, 58, 317–333. [Google Scholar] [CrossRef]
- Holden, E.J.; Wong, J.C.; Kovesi, P.; Wedge, D.; Dentith, M.; Bagas, L. Identifying structural complexity in aeromagnetic data: An image analysis approach to greenfields gold exploration. Ore Geol. Rev. 2012, 46, 47–59. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.; Guha, A.; Sahoo, S.D.; Mukherjee, A. New insights on Kimberlite emplacement around the Bundelkhand Craton using integrated satellite-based remote sensing, gravity and magnetic data. Geocarto Int. 2020, 37, 1–23. [Google Scholar] [CrossRef]
- Thompson, D.T. EULDPH—A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 1982, 47, 31–37. [Google Scholar] [CrossRef]
- Reid, A.B.; Allsop, J.M.; Granser, H.; Millet, A.J.; Somerton, I.W. Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics 1990, 55, 80–91. [Google Scholar] [CrossRef]
- Agarwal, B.N.P.; Srivastava, S. Analyses of self-potential anomalies by conventional and extended Euler deconvolution techniques. Comput. Geosci. 2009, 35, 2231–2238. [Google Scholar] [CrossRef]
- Jacobsen, B.H. Case for upward continuation as a standard separation filter for potential-field maps. Geophysics 1987, 52, 1138–1148. [Google Scholar] [CrossRef]
- Rajagopalan, S. Analytic Signal vs. Reduction to Pole: Solutions for Low Magnetic Latitudes. ASEG Ext. Abst. 2003, 2, 1–4. [Google Scholar] [CrossRef]
- Spector, A.; Grant, F.S. Statistical models for interpreting aeromagnetic data. Geophysics 1970, 35, 293–302. [Google Scholar] [CrossRef]
- Blakely, R.J. Potential Theory in Gravity and Magnetic Applications; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Mishra, D.C. Gravity and Magnetic Methods for Geological Studies; BS Publications: Hyderabad, India, 2011. [Google Scholar]
- Alexopoulos, J.; Vassilakis, E.; Dilalos, S. Combined geophysical techniques for detailed groundwater flow investigation in tectonically deformed fractured rocks. Ann. Geophys. 2013, 56, S0669. [Google Scholar] [CrossRef]
- Sharma, S.P.; Biswas, A.; Baranwal, V.C. Very low frequency electromagnetic method: A shallow subsurface investigation technique for geophysical applications. In Recent Trends in Modelling of Environmental Contaminants; Springer: Berlin, Germany, 2014; pp. 119–141. [Google Scholar]
- Baranwal, V.C.; Franke, A.; Borner, R.U.; Spitzer, K. Unstructured grid based 2-D inversion of VLF data for models including topography. J. Appl. Geophys. 2011, 75, 363–372. [Google Scholar] [CrossRef]
- Baranwal, V.C.; Sharma, S.P. Integrated geophysical studies in the East-Indian geothermal province. Pure Appl. Geophys. 2006, 163, 209–227. [Google Scholar] [CrossRef]
- Parasnis, D. Mining Geophysics, Methods in Geochemistry and Geophysics; Elsevier: Amsterdam, The Netherlands, 1973. [Google Scholar]
- Paterson, N.R.; Ronka, V. Five Years of Surveying with the Very Low Frequency-Electromagnetic Method. Geoexploration 1971, 9, 7–26. [Google Scholar] [CrossRef]
- Karous, M. Effect of relief in EM methods with very distant source. Geoexploration 1979, 17, 33–42. [Google Scholar] [CrossRef]
- Karous, M.; Hjelt, S.E. Linear filtering of VLF dip-angle measurements. Geophys. Prospect. 1983, 31, 782–794. [Google Scholar] [CrossRef]
- Revil, A.; Jardani, A. The Self-Potential Method: Theory and Applications in Environmental Geosciences; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Srivardhan, V.; Pal, S.K.; Vaish, J.; Kumar, S.; Bharti, A.K.; Priyam, P. Particle swarm optimisation inversion of self-potential data for depth estimation of coal fires over East Basuria colliery, Jharia coalfield, India. Environ. Earth Sci. 2016, 75, 688. [Google Scholar] [CrossRef]
- Yungul, S. Interpretation of spontaneous polarization anomalies caused by spheroidal ore bodies. Geophysics 1950, 15, 237–246. [Google Scholar] [CrossRef]
- Bhattacharya, B.B.; Roy, N. A note on the use of nomograms for self-potential anomalies. Geophys. Prospect. 1981, 29, 102–107. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, Australia, 27 November 1995. [Google Scholar]
- Peksen, E.; Yas, T.; Kayman, A.Y.; Özkan, C. Application of particle swarm optimization on self-potential data. J. Appl. Geophys. 2011, 75, 305–318. [Google Scholar] [CrossRef]
- Santos, F.A.M. Inversion of self-potential of idealized bodies using particle swarm optimization. Comput. Geosci. 2010, 36, 1185–1190. [Google Scholar] [CrossRef]
- Martínez, F.J.L.; Gonzalo, E.G.; Fernandez, P.; Kuzma, H.; Omar, C. PSO: A powerful algorithm to solve geophysical inverse problems: Application to a 1D-DC resistivity case. J. Appl. Geophys. 2010, 71, 13–25. [Google Scholar] [CrossRef]
- Trelea, I.C. The particle swarm optimization algorithim: Convergence analysis and parameter selection. Inf. Process. Lett. 2003, 85, 317–325. [Google Scholar] [CrossRef]
- Clerc, M.; Kennedy, J. The Particle Swarm: Explosion, Stability, and Convergence in a Multi-Dimensional Complex Space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [Google Scholar] [CrossRef]
- Ingber, L. Very fast simulated re-annealing. Math. Comput. Model. 1989, 12, 967–973. [Google Scholar] [CrossRef]
- Ingber, L. Simulated annealing: Practice versus theory. Math. Comput. Model. 1993, 18, 29–57. [Google Scholar] [CrossRef]
- Kirkpatrick, S.; Gelatt, C.D., Jr.; Vecchi, M.P. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Baghmisheh, M.T.V.; Navarbaf, A. A Modified Very Fast Simulated Annealing Algorithm. In Proceedings of the 2008 International Symposium on Telecommunications, Tehran, Iran, 27–28 August 2008. [Google Scholar] [CrossRef]
- Davis, L. Handbook of Genetic Algorithms; Van Nostrand Reinhold: New York, NY, USA, 1991. [Google Scholar]
- Eiben, A.E.; Smith, J.E. Introduction to Evolutionary Computing; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Elkhodary, S.T.; Youssef, M.A.S. Integrated potential field study on the subsurface structural characterization of the area North Bahariya Oasis, Western Desert, Egypt. Arab. J. Geosci. 2013, 6, 3185–3200. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z. A review on Hilbert–Huang transform: The method and its applications on geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef]
- Beamish, D. Two-dimensional regularised inversion of VLF data. J. Appl. Geophys. 1994, 32, 357–374. [Google Scholar] [CrossRef]
- Beamish, D. Quantitative 2D VLF data interpretation. J. Appl. Geophys. 2000, 45, 33–47. [Google Scholar] [CrossRef]
- Kaikkonen, P.; Sharma, S.P. 2-D nonlinear joint inversion of VLF and VLF-R data using simulated annealing. J. Appl. Geophys. 1998, 39, 155–176. [Google Scholar] [CrossRef]
- Fraser, D.C. Contouring of VLF-EM data. Geophysics 1969, 34, 958–967. [Google Scholar] [CrossRef]
- Alexopoulos, J.D.; Dilalos, S.; Tsatsaris, A.; Mavroulis, S. ERT and VLF measurements contributing to the extended revelation of the ancient town of Trapezous (Peloponnesus, Greece). In Proceedings of the Near Surface Geoscience 2014—20th European Meeting of Environmental and Engineering Geophysics, Athens, Greece, 14–18 September 2014; pp. 1–5. [Google Scholar]
- Khalil, M.A.; Santos, F.A.M.; Moustafa, S.M.; Saad, U.M. Mapping water seepage from Lake Nasser, Egypt, using the VLF-EM method: A case study. J. Geophys. Eng. 2009, 6, 101. [Google Scholar] [CrossRef]
- Kumar, S.; Pal, S.K.; Guha, A. Very low Frequency electromagnetic (VLF-EM) study over Wajrakarur kimberlite Pipe 6 in Eastern Dharwar Craton, India. J. Earth Syst. Sci. 2020, 129, 102. [Google Scholar] [CrossRef]
- Kumar, R.; Pal, S.K.; Gupta, P.K. Water Seepage Mapping in an Underground Coal-Mine Barrier Using Self-potential and Electrical Resistivity Tomography. J. Mine Water Environ. 2020, 40, 622–638. [Google Scholar] [CrossRef]
S.N. | Susceptibility Range (SI) | Nature of Magnetic Susceptibility | Remarks |
---|---|---|---|
1 | 1 × 10−6 to 60 × 10−6 | Low susceptibility | Secondary shear zones |
2 | 60 × 10−6 to 100 × 10−6 | Moderate susceptibility | Covering nearby parts of the shear zones |
3 | 100 × 10−6 to 180 × 10−6 | High susceptibility | Other parts of the study area |
(a) | |||||||
S.N. | z (m) | P (mV) | θ (°) | q | V˳(mV) | x˳(m) | |
Profile A–A/ | 1–100 | 1000–1600 | 0.1–350 | 0.98–1.2 | −44.40 to 3.87 | 0–400 | |
Profile B–B/ | 1–100 | 1000–1600 | 0.1–350 | 0.98–1.2 | −45.80 to 2.67 | 0–295 | |
Profile C–C/ | 1–100 | 1000–1600 | 0.1–350 | 0.98–1.2 | −62.00 to 3.90 | 0–400 | |
Profile D–D/ | 1–100 | 1000–1600 | 0.1–350 | 0.98–1.2 | −95.48 to −1.46 | 0–300 | |
(b) | |||||||
S.N. | z (m) | x˳(m) | θ (°) | q | V˳(mV) | Misfit% | P (mV) |
Profile A–A/ | 19.45 | 210.00 | 65.09 | 1.1 | −43.90 | 0.0017 | −1402.15 |
Profile B–B/ | 20.60 | 160.12 | 63.09 | 0.99 | −40.87 | 0.001 | −1459.67 |
Profile C–C/ | 26.29 | 212.46 | 63.09 | 1.05 | −61.00 | 0.0012 | −2178.61 |
Profile D–D/ | 30.10 | 164.22 | 63.09 | 1.01 | −93.75 | 0.0018 | −3286.49 |
(a) | ||||||
S.N. | z (m) | P (mV) | θ (°) | q | x˳(m) | |
Profile A–A/ | 0–100 | −5000–0 | 0–90 | 0.98–1.2 | 100–225 | |
Profile B–B/ | 0–100 | −5000–0 | 0–90 | 0.98–1.2 | 100–300 | |
Profile C–C/ | 0–100 | −8000–0 | 0–90 | 0.98–1.2 | 0–300 | |
Profile D–D/ | 0–100 | −5000–0 | 0–90 | 0.98–1.2 | 0–100 | |
(b) | ||||||
S.N. | z (m) | x˳(m) | θ (°) | q | Misfit% | P (mV) |
Profile A–A/ | 22.7 ± 0.3 | 200.2 ± 0.3 | 64.5 ± 0.3 | 1.1 | 0.0039 | −2725.7 ± 9.4 |
Profile B–B/ | 18.9 ± 0.3 | 180.0 ± 0.3 | 62.3 ± 0.2 | 1.13 | 0.0016 | −4286.7 ± 15.6 |
Profile C–C/ | 28.4 ± 0.2 | 205.6 ± 0.2 | 65.4 ± 0.2 | 0.98 | 0.0039 | −5885.5 ± 17.4 |
Profile D–D/ | 35.4 ± 0.3 | 172.7 ± 0.3 | 61.0 ± 0.2 | 1.16 | 0.0026 | −2644.2 ± 10.2 |
(a) | |||||
S.N. | z (m) | P (mV) | θ (°) | x˳(m) | |
Profile A–A/ | 0–80 | −5000–5000 | 0–180 | 150–250 | |
Profile B–B/ | 0–80 | −4000–4000 | 0–180 | 100–200 | |
Profile C–C/ | 0–80 | −5000–5000 | 0–180 | 100–300 | |
Profile D–D/ | 0–80 | 0–8000 | 0–180 | 100–200 | |
(b) | |||||
S.N. | z (m) | x˳(m) | θ (°) | Misfit% | P (mV) |
Profile A–A/ | 23.04 | 200.00 | 65.53 | 3.00 | −2630.65 |
Profile B–B/ | 25.92 | 188.90 | 60.31 | 4.43 | −2574.48 |
Profile C–C/ | 30.88 | 208.68 | 67.02 | 3.21 | −3869.58 |
Profile D–D/ | 37.63 | 173.36 | 74.98 | 4.36 | −5013.87 |
PSO | VFSA | GA | |||||||
---|---|---|---|---|---|---|---|---|---|
S.N. | z (m) | x˳(m) | Misfit% | z (m) | x˳(m) | Misfit% | z (m) | x˳(m) | Misfit% |
Profile A–A/ | 19.45 | 210.00 | 0.0017 | 22.7 ± 0.3 | 200.2 ± 0.3 | 0.0039 | 23.04 | 200.00 | 3.00 |
Profile B–B/ | 20.60 | 160.12 | 0.001 | 18.9 ± 0.3 | 180.0 ± 0.3 | 0.0016 | 25.92 | 188.90 | 4.43 |
Profile C–C/ | 26.29 | 212.46 | 0.0012 | 28.4 ± 0.2 | 205.6 ± 0.2 | 0.0039 | 30.88 | 208.68 | 3.21 |
Profile D–D/ | 30.10 | 164.22 | 0.0018 | 35.4 ± 0.3 | 172.7 ± 0.3 | 0.0026 | 37.63 | 173.36 | 4.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horo, D.; Pal, S.K.; Singh, S.; Biswas, A. New Insights into the Gold Mineralization in the Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt, Eastern Indian Shield Using Magnetic, Very Low-Frequency Electromagnetic (VLF-EM), and Self-Potential Data. Minerals 2023, 13, 1289. https://doi.org/10.3390/min13101289
Horo D, Pal SK, Singh S, Biswas A. New Insights into the Gold Mineralization in the Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt, Eastern Indian Shield Using Magnetic, Very Low-Frequency Electromagnetic (VLF-EM), and Self-Potential Data. Minerals. 2023; 13(10):1289. https://doi.org/10.3390/min13101289
Chicago/Turabian StyleHoro, Dharmita, Sanjit Kumar Pal, Sahendra Singh, and Arkoprovo Biswas. 2023. "New Insights into the Gold Mineralization in the Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt, Eastern Indian Shield Using Magnetic, Very Low-Frequency Electromagnetic (VLF-EM), and Self-Potential Data" Minerals 13, no. 10: 1289. https://doi.org/10.3390/min13101289
APA StyleHoro, D., Pal, S. K., Singh, S., & Biswas, A. (2023). New Insights into the Gold Mineralization in the Babaikundi–Birgaon Axis, North Singhbhum Mobile Belt, Eastern Indian Shield Using Magnetic, Very Low-Frequency Electromagnetic (VLF-EM), and Self-Potential Data. Minerals, 13(10), 1289. https://doi.org/10.3390/min13101289