Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research
Abstract
:1. Introduction
2. Study Area and Mineral Prospectivity Model
2.1. Geological Setting
2.2. Prospectivity Model Establishment
3. Methodology
3.1. Dataset Establishment
3.2. Explorational Data Analysis
3.3. Random Forest Classification
3.4. Hyperparameter Tuning
3.5. Model Evaluation
3.5.1. Confusion Matrix
3.5.2. Receiver Operating Characteristic Curve
3.6. Model Explainability
3.6.1. Features Importance
3.6.2. Partial Dependence Plots
3.6.3. Shapley Additive Explanations
4. Results and Discussion
4.1. MPM Results
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Atomic Energy Agency. World Uranium Geology, Exploration, Resources and Production; Non-Serial Publications; IAEA: Vienna, Austria, 2020. [Google Scholar]
- Cheng, M. Ideas and Methods for Mineral Resources Integrated Prediction in Covered Areas. Earth Sci. 2012, 37, 1109–1125. [Google Scholar]
- Xiao, K.; Li, N.; Sun, L.; Zou, W.; Li, Y. Large scale 3D mineral prediction methods and channels based on 3D information technology. J. Geol. 2012, 36, 229–236. [Google Scholar]
- Xiao, K.; Li, N.; Porwal, A.; Holden, E.-J.; Bagas, L.; Lu, Y. GIS-based 3D prospectivity mapping: A case study of Jiama copper-polymetallic deposit in Tibet, China. Ore Geol. Rev. 2015, 71, 611–632. [Google Scholar] [CrossRef]
- Xiao, K.; Sun, L.; Zhu, Y. Theory of Mineral Resource Assessment. Geol. Rev. 2016, 62, 63–64. [Google Scholar]
- Chen, J.; Yu, P.; Shi, R.; Yu, M.; Zhang, S. Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies. Earth Sci. Front. 2014, 21, 211–220. [Google Scholar]
- Wang, Y.; Chen, J.; Jia, D. Three-Dimensional Mineral Potential Mapping for Reducing Multiplicity and Uncertainty: Kaerqueka Polymetallic Deposit, QingHai Province, China. Nat. Resour. Res. 2019, 29, 365–393. [Google Scholar] [CrossRef]
- Xiang, J.; Xiao, K.; Chen, J.; Li, S. 3D Metallogenic Prediction Based on Metallogenic System Analysis: A Case Study in the Lala Copper Mine of Sichuan Province. Acta Geosci. Sin. 2020, 41, 135–143. [Google Scholar]
- Zuo, R.; Kreuzer, O.P.; Wang, J.; Xiong, Y.; Zhang, Z.; Wang, Z. Uncertainties in GIS-Based Mineral Prospectivity Mapping: Key Types, Potential Impacts and Possible Solutions. Nat. Resour. Res. 2021, 30, 3059–3079. [Google Scholar] [CrossRef]
- Kong, W.; Xiao, K.; Chen, J.; Sun, L.; Li, N. A combined prediction method for reducing prediction uncertainty in the quantitative mineral resources prediction. Earth Sci. Front. 2021, 28, 128–138. [Google Scholar]
- Morris, R.G.M. D.O. Hebb: The Organization of Behavior, Wiley: New York; 1949. Brain Res Bull. 1999, 50, 437. [Google Scholar] [CrossRef]
- Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef]
- Linnainmaa, S. The Representation of the Cumulative Rounding Error of an Algorithm as a Taylor Expansion of the Local Rounding Errors. Master’s Thesis, University of Helsinki, Helsinki, Finland, 1970. [Google Scholar]
- Werbos, P.J. Applications of advances in nonlinear sensitivity analysis. In System Modeling and Optimization; Drenick, R.F., Kozin, F., Eds.; Lecture Notes in Control and Information Sciences; Springer: Berlin/Heidelberg, Germany, 1982; Volume 38, pp. 762–770. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation; Defense Technical Information Center: Fort Belvoir, VA, USA, 1985. [Google Scholar]
- Hecht-Nielsen, R. Theory of the backpropagation neural network. In Proceedings of the International 1989 Joint Conference on Neural Networks, Washington, DC, USA, 18–22 June 1989; pp. 593–605. [Google Scholar]
- Quinlan, J. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Geoffrey, E.; Simon, O.; Yee-Whye, T. A fast-learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar]
- Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy Layer-Wise Training of Deep Networks. In Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Marc, A.; Christopher, P.; Sumit, C.; Yang, L. Efficient learning of sparse representations with an energy-based model. In Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference, Proceedings of the 19th International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 4–7 December 2006; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Yann, L.; Lenon, B.; Yoshua, B.; Patrick, H. Gradient-based learning applied to document recognition. Proc. IEEE 1989, 86, 2278–2324. [Google Scholar]
- Yann, L.; Yoshua, B. Convolutional Networks for Images, Speech, and Time Series. In The Handbook of Brain Theory and Neural Networks; MIT Press: Cambridge, MA, USA, 1995; pp. 255–258. [Google Scholar]
- Harris, D.P. Mineral Resources Appraisal: Mineral Endowment, Resources, and Potential Supply: Concepts, Methods and Cases; Oxford University Press: New York, NY, USA, 1984. [Google Scholar]
- Agterberg, F.P.; Bonham-Carter, G.F. Measuring the performance of mineral-potential maps. Nat. Resour. Res. 2005, 14, 1–7. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Liu, C.; Wang, Y. Mineral Prospectivity Prediction via Convolutional Neural Networks Based on Geological Big Data. J. Earth Sci. 2021, 32, 327–347. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, J.; Xu, H.; Jia, Y.; Chen, X.; Jia, Z.; Liu, H. Three-Dimensional Mineral Prospectivity Mapping by XGBoost Modeling: A Case Study of the Lannigou Gold Deposit, China. Nat. Resour. Res. 2022, 31, 1135–1156. [Google Scholar] [CrossRef]
- Li, X.; Lin, W.; Guan, B. The impact of computing and machine learning on complex problem-solving. Eng. Rep. 2023, 5, e12702. [Google Scholar] [CrossRef]
- Anmol, A.; Ananya, A. Machine learning models trained on synthetic datasets of multiple sample sizes for the use of predicting blood pressure from clinical data in a national dataset. PLoS ONE 2023, 18, e0283094. [Google Scholar]
- Li, C.; Xiao, K.; Li, N.; Song, X.; Xhang, S.; Wang, K.; Chu, W.; Cao, R. A comparative study of support vector machine, random forest and artificial neural network machine learning algorithms in geochemical anomaly information extraction. Acta Geosci. Sin. 2020, 41, 309–319. [Google Scholar]
- Hong, J.; Gan, C.; Liu, J. Prediction of REEs in OIB by major elements based on machine learning. Earth Sci. Front. 2019, 26, 45–54. [Google Scholar]
- Jung, D.; Choi, Y. Systematic review of machine learning applications in mining: Exploration, exploitation, and reclamation. Minerals 2021, 11, 148. [Google Scholar] [CrossRef]
- Jooshaki, M.; Nad, A.; Michaux, S. A systematic review on the application of machine learning in exploiting mineralogical data in mining and mineral industry. Minerals 2021, 11, 816. [Google Scholar] [CrossRef]
- Guo, Z.; Ytai, Y.; Ren, W.; Qang, Z.; Feng, Z.; Chen, L.; Tanf, Z. Emplacement and episodic denudation of basement granites from the southern Jiergalangtu Sag, Erlian Basin and its tectonic implications. Earth Sci. Front. 2023, 30, 259–271. [Google Scholar]
- Qi, J.; Zhao, X.; Li, X.; Yang, M.; Xiao, Y.; Yu, F.; Dong, Y. The distribution of Early Cretaceous faulted sags and their relationship with basement structure within Erlian Basin. Earth Sci. Front. 2015, 22, 118–128. [Google Scholar]
- Han, X.; Wu, Z.; Lin, Z.; Jiang, J.; Hu, H.; Yin, D.; Qiao, H.; Li, Z. Constraints of Sedimentary Facies of the Targeting Layers on Sandstone-type Uranium Mineralization in Major Uranium-producing Basins in Northern China: A Brief Discussion. Geotecton. Metallog. 2020, 44, 697–709. [Google Scholar]
- Kang, S.; Yang, J.; Liu, W.; Zhao, X.; Qiao, P.; Du, P.; Lv, Y. Mineralization Characteristics and Potential of Paleo-Valley Type Uranium Deposit in Central Erlian Basin, Inner Mongolia. Uranium Geol. 2017, 33, 206–214. [Google Scholar]
- Chen, Y.; Zhu, Y. Metallogenic Model of Chinese Ore Deposits; Geological Press: Beijing, China, 1993. [Google Scholar]
- Shi, J.; Tang, J.; Zhou, P.; Jin, Q.; Yang, Z.; Zhu, L.; Jin, X. A discussion on the exploration model. Geol. Bull. China 2011, 30, 1119–1125. [Google Scholar]
- Li, S.; Chen, J.; Xiang, J. Classification and visualization of geoscience text big data based on convolutional neural network: A case study of Lala copper mine in Sichuan. In Proceedings of the 2018 Annual Meeting of Chinese Geoscience Union, Beijing, China, 19–23 October 2018. [Google Scholar]
- Li, S.; Chen, J.; Xiang, J.; Zhang, Z.; Zhang, Y. Two-dimensional prospecting prediction based on AlexNet network: A case study of sedimentary Mn deposits in Songtao-Huayuan area. Geol. Bull. China 2019, 38, 2022–2032. [Google Scholar]
- Pieter, V. Exploratory Analysis of Provenance Data Using R and the Provenance Package. Minerals 2023, 13, 375. [Google Scholar]
- Xu, N.; Huang, B.; Li, Q.; Zhu, W.; Wang, Z.; Wang, R. Towards the study on the geochemistry through machine learning. J. China Coal Soc. 2022, 47, 1895–1907. [Google Scholar]
- Liu, W.; Kuang, S.; Jiang, L.; Shi, Q.; Peng, C. Characteristics of Paleo-valley Sandstone-type Uranium Mineralization in the Middle of Erlian Basin. Uranium Geol. 2013, 29, 328–335. [Google Scholar]
- Luo, S.; Luo, B. Pandas Data Analysis Quickly Starts with 500 Moves; Tsinghua University Press: Beijing, China, 2023. [Google Scholar]
- Zhang, Z. Spatial and Temporal Characteristics of Air Quality and Its Influence Factors in Wuhan. Master’s Thesis, Wuhan University of Science and Technology, Wuhan, China, 2020. [Google Scholar]
- Cui, Z. On the Cover: Violin Plot. Educ. Meas. Issues Pract. 2020, 39, 7. [Google Scholar] [CrossRef]
- Mohsen, R.; Matthias, G. No-Free-Lunch Theorems for Reliability Analysis. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part A Civ. Eng. 2023, 9, 04023019. [Google Scholar]
- Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016. [Google Scholar]
- Zhang, S.; Carranza, E.J.M.; Xiao, K.; Wei, H.; Yang, F.; Chen, Z.; Li, N.; Xiang, J. Mineral Prospectivity Mapping based on Isolation Forest and Random Forest: Implication for the Existence of Spatial Signature of Mineralization in Outliers. Nat. Resour. Res. 2022, 31, 1981–1999. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, N. Ensemble Methods: Foundations and Algorithms; Publishing House of Electronics Industry: Beijing, China, 2020. [Google Scholar]
- Suroor, N.; Jaiswal, A.; Sachdeva, N. Stack Ensemble Oriented Parkinson Disease Prediction Using Machine Learning Approaches Utilizing GridSearchCV-Based Hyper Parameter Tuning. Crit. Rev. Biomed. Eng. 2022, 50, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Nykänen, V.; Lahti, I.; Niiranen, T.; Korhonen, K. Receiver operating characteristics (ROC) as validation tool for prospectivity models—A magmatic Ni–Cu case study from the Central Lapland Greenstone Belt, Northern Finland. Ore Geol. Rev. 2015, 71, 853–860. [Google Scholar] [CrossRef]
- Sun, T.; Li, H.; Wu, K.; Chen, F.; Zhu, Z.; Hu, Z. Data-Driven Predictive Modelling of Mineral Prospectivity Using Machine Learning and Deep Learning Methods: A Case Study from Southern Jiangxi Province, China. Minerals 2020, 10, 102. [Google Scholar] [CrossRef]
- Althouse, A.D. Statistical graphics in action: Making better sense of the ROC curve. Int. J. Cardiol. 2016, 215, 9–10. [Google Scholar] [CrossRef]
- Ling, C.X.; Huang, J.; Zhang, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. In Advances in Artificial Intelligence. Canadian AI 2003, Proceedings of the Canadian AI 2003, Halifax, NS, Canada, 11–13 June 2003; Xiang, Y., Chaib-draa, B., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2671. [Google Scholar]
- Lipton, Z.C. The Mythos of Model Interpretability. arXiv 2016, arXiv:1606.03490. [Google Scholar]
- Li, X.-M.; Zhang, Y.-X.; Li, Z.-K.; Zhao, X.-F.; Zuo, R.-G.; Fan, X.; Yi, Z. Discrimination of Pb-Zn deposit types using sphalerite geochemistry: New insights from machine learning algorithm. Geosci. Front. 2023, 14, 200–219. [Google Scholar] [CrossRef]
- Zhang, S.; Xiao, K. Random forest-based mineralization prediction of the Lala-type Cu deposit in the Huili area, Sichuan Province. Geol. Explor. 2020, 56, 239–252. [Google Scholar]
- Sun, D.; Chen, D.; Mi, C.; Chen, X.; Mi, S.; Li, X. Evaluation of landslide susceptibility in the gentle hill-valley areas based on the interpretable random forest-recursive feature elimination model. J. Geomech. 2023, 29, 202–219. [Google Scholar]
- Ancona, M.; Öztireli, C.; Gross, M. Explaining deep neural networks with a polynomial time algorithm for shapley value approximation. In Proceedings of the International Conference on Machine Learning 2019, Long Beach, CA, USA, 10–15 June 2019; pp. 272–281. [Google Scholar]
- Luo, Z.; Zuo, R.; Xiong, Y.; Zhou, B. Metallogenic-Factor Variational Autoencoder for Geochemical Anomaly Detection by Ad-Hoc and Post-Hoc Interpretability Algorithms. Nat. Resour. Res. 2023, 32, 835–853. [Google Scholar] [CrossRef]
- Liu, Z. Towards Versatile Class-Imbalanced Learning: Algorithm, Application, and Software Library. Master’s Thesis, Jilin University, Changchun, China, 2022. [Google Scholar]
- Burton, S.; Herd, B. Addressing uncertainty in the safety assurance of machine-learning. Front. Comput. Sci. 2023, 5, 1132580. [Google Scholar] [CrossRef]
- Fan, F.; Wang, G. Learning from pseudo-randomness with an artificial neural network—Does God play pseudo-dice? IEEE Access 2018, 6, 22987–22992. [Google Scholar] [CrossRef]
- Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 2019, 1, 206–215. [Google Scholar] [CrossRef]
- van der Mass, H.L.; Verschure, P.F.M.J.; Molenaar, P.C.M. A note on chaotic behavior in simple neural networks. Neural Netw. 1990, 3, 119–122. [Google Scholar] [CrossRef]
- Wang, Z.J.; Turko, R.; Shaikh, O.; Park, H.; Das, N.; Hohman, F.; Kahng, M.; Chau, D.H.P. CNN explainer: Learning convolutional neural networks with interactive visualization. IEEE Trans. Vis. Comput. Graph. 2020, 27, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Cantürk, S.; Singh, A.; St-Amant, P.; Behrmann, J. Machine-learning driven drug repurposing for COVID-19. arXiv 2020, arXiv:2006.14707. [Google Scholar]
Feature Category | Feature Type | Ore Controlling Features | Feature Description |
---|---|---|---|
Metallogenic geological setting | Geotectonic setting | Depression | Manite depression |
Formation | Saihan upper group | Prospecting stratum | |
Mineralization period | Ore-bearing rock | Clastic rock | Grey sand body |
Sedimentary system | Braided fluvial facies | Longitudinal bar | |
Migration conditions | River centerline | The metallogenic position is within the range of paleochannel. | |
Characteristics of ore body | The intersection of rivers | The scale of ore body at the intersection of river courses increases. |
Feature | FAS | ST | SR | GR | Target |
---|---|---|---|---|---|
Full Name | Sedimentary Facies | Sand Thickness | Sand Rate | Grey Sand Rate | Mineralized Borehole |
Variable Types | Categorical | Numeric | Numeric | Numeric | Categorical |
Value Domain | 4, 5, 6 | 9.14 m~106.43 m | 20%~89.4% | 9.77%~82.99% | 0, 1 |
Geological Description | 4—Channel 5—Longitudinal Bar 6—Floodplain | 0—No mineralization 1—Mineralization |
Parameters | Description | Optimized Value |
---|---|---|
n_estimators | The number of trees in the forest | 108 |
criterion | The function to measure the quality of a split | “gini” |
max_depth | The maximum depth of the tree | 81 |
min_samples_split | The minimum number of samples required to split an internal node | 2 |
max_features | The number of features to consider when looking for the best split | 1 |
min_samples_leaf | The minimum number of samples required to be at a leaf node | 1 |
oob_score | Whether to use out-of-bag samples to estimate the generalization score | True |
Precision | Recall | F1 Score | Support | |
---|---|---|---|---|
Not mineralization | 0.85 | 0.93 | 0.89 | 141 |
Mineralization | 0.93 | 0.84 | 0.88 | 150 |
Accuracy | 0.88 | 291 | ||
Macro average | 0.89 | 0.88 | 0.88 | 291 |
Weighted average | 0.89 | 0.88 | 0.88 | 291 |
Serial Number | Weight Value | Feature |
---|---|---|
1 | 0.1527 ± 0.0421 | Sand Rate |
2 | 0.0182 ± 0.0381 | Grey Sand Rate |
3 | 0.0109 ± 0.0388 | Longitudinal Bar |
4 | 0.0018 ± 0.0073 | Floodplain |
5 | −0.0109 ± 0.0178 | Channel |
6 | −0.0291 ± 0.0313 | Sand Thickness |
Serial Number | Probability | Number of Grids | Percentage of Grids |
---|---|---|---|
1 | >0.5 | 3958 | 3.94% |
2 | >0.6 | 2077 | 2.07% |
3 | >0.7 | 1004 | 1.00% |
4 | >0.8 | 353 | 0.35% |
5 | >0.9 | 77 | 0.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, W.; Chen, J.; Zhu, P. Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research. Minerals 2024, 14, 128. https://doi.org/10.3390/min14020128
Kong W, Chen J, Zhu P. Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research. Minerals. 2024; 14(2):128. https://doi.org/10.3390/min14020128
Chicago/Turabian StyleKong, Weihao, Jianping Chen, and Pengfei Zhu. 2024. "Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research" Minerals 14, no. 2: 128. https://doi.org/10.3390/min14020128
APA StyleKong, W., Chen, J., & Zhu, P. (2024). Machine Learning-Based Uranium Prospectivity Mapping and Model Explainability Research. Minerals, 14(2), 128. https://doi.org/10.3390/min14020128