The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region
Abstract
:1. Introduction
2. Geological Setting
2.1. EMP Activity and the ELIP
2.2. Stratigraphy and Depositional Setting
3. Materials and Methods
4. Results
4.1. Petrography
4.2. Geochemistry
4.2.1. Stable Carbon and Oxygen Isotopes
4.2.2. Radiogenic Sr Isotopes
4.2.3. Trace Earth Elements
5. Discussion
5.1. EMP Activity Altered the Sedimentary Environment
5.2. Complex Diagenesis Resulting from EMP Activity
5.2.1. Abnormally High Geothermal Temperature
5.2.2. Multiple Diagenetic Fluids
5.2.3. Karst and Fractures
5.3. Model of Reservoir Genesis Associated with EMP Activity
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.Z.; Guo, Z.H.; Wan, Y.J.; Liu, X.H.; Zhang, M.L.; Xie, W.R.; Su, Y.H.; Hu, Y.; Feng, J.W.; Yang, B.X.; et al. Geological characteristics and development strategies for Cambrian Longwangmiao Formation gas reservoir in Anyue gas field, Sichuan Basin, SW China. Pet. Explor. Dev. 2017, 44, 398–406. [Google Scholar] [CrossRef]
- Ma, X.H. A golden era for natural gas development in the Sichuan Basin. Nat. Gas Ind. 2017, 37, 1–10. [Google Scholar] [CrossRef]
- Han, L.L.; Li, X.Z.; Liu, Z.Y.; Duan, G.F.; Wang, Y.J.; Guo, X.L.; Guo, W.; Cui, Y. Influencing factors and prevention measures of casing deformation in deep shale gas wells in Luzhou block, southern Sichuan Basin, SW China. Pet. Explor. Dev. 2023, 50, 979–988. [Google Scholar] [CrossRef]
- Hu, A.P.; Pan, L.Y.; Hao, Y.; Shen, A.J.; Gu, M.F. Origin Characteristics and Distribution of Dolostone Reservoir in Qixia Formation and Maokou Formation, Sichuan Basin, China. Mar. Orig. Pet. Geol. 2018, 23, 39–52. [Google Scholar]
- Duan, J.M.; Zheng, J.F.; Shen, A.J.; Zhu, M.; Yao, Q.Y.; Hao, Y. Characteristics and genesis of dolomite reservoir of the Lower Permian Qixia Formation in central Sichuan Basin. Mar. Orig. Pet. Geol. 2021, 26, 345–356. [Google Scholar]
- Huang, S.P.; Jiang, Q.C.; Feng, Q.F.; Wu, Y.; Lu, W.H.; Su, W.; Chen, X.Y.; Ren, M.Y.; Peng, H. Type and distribution of Mid-Permian Maokou Formation karst reservoirs in southern Sichuan Basin, SW China. Pet. Explor. Dev. 2019, 46, 293–300. [Google Scholar] [CrossRef]
- Li, R.; Su, C.P.; Shi, G.S.; Jia, H.F.; Li, S.H.; Yu, Y. The genesis of nodular limestone reservoirs of the first period of Maokou Formation of Permian in southern Sichuan Basin. Nat. Gas Ind. 2021, 32, 806–815. [Google Scholar]
- Hu, S.; Tan, X.C.; Luo, B.; Zhang, B.J.; Zhang, Y.; Su, C.P.; Lu, F.F.; Li, M.L. Sequence stratigraphic characteristics and geological significance of the Permian Qixia Stage in northwestern Sichuan Basin. J. Palaeogeogr. 2020, 20, 1109–1126. [Google Scholar]
- Hu, X.; Wang, Y.F.; Pei, S.Q.; Zeng, Q.; Li, R.R.; Long, H.Y.; Li, T.L.; Zhou, S.Y.; Sun, H.T. Sedimentary evolution and its influence on karst reservoir development of the Middle Permian Maokou Formation in the northwestern Sichuan Basin, China. Nat. Gas Geosci. 2022, 33, 572–587. [Google Scholar]
- Zhao, W.Z.; Shen, A.J.; Hu, S.Y.; Zhang, B.M.; Pan, W.Q.; Zhou, J.G.; Wang, Z.C. Geological conditions and distributional features of large-scale carbonate reservoirs onshore China. Pet. Explor. Dev. 2012, 39, 1–12. [Google Scholar] [CrossRef]
- Shen, A.J.; Zhao, W.Z.; Hu, A.P.; She, M.; Chen, Y.N.; Wang, X.F. Major factors controlling the development of marine carbonate reservoirs. Pet. Explor. Dev. 2015, 42, 545–554. [Google Scholar] [CrossRef]
- Shen, A.J.; Chen, Y.N.; Meng, S.X.; Zheng, J.F.; Qiao, Z.F.; Ni, X.F.; Zhang, J.Y.; Wu, X.N. The research progress of marine carbonate reservoirs in China and its significance for oil and gas exploration. Mar. Orig. Pet. Geol. 2019, 24, 1–14. [Google Scholar]
- Su, W.; Jiang, Q.C.; Chen, Z.Y.; Wang, Z.C.; Jiang, H.; Bian, C.S.; Feng, Q.F.; Wu, Y.L. Sequence stratigraphic features of Middle Permian Maokou Formation in the Sichuan Basin and their controls on source rocks and reservoirs. Nat. Gas Ind. 2015, 35, 34–43. [Google Scholar] [CrossRef]
- Zhou, J.G.; Yao, G.S.; Yang, G.; Gu, M.F.; Yao, Q.Y.; Jiang, Q.C.; Yang, L.; Yang, Y.R. Lithofacies palaeogeography and favorable gas exploration zones of Qixia and Maokou Fms in the Sichuan Basin. Nat. Gas Ind. 2016, 36, 8–15. [Google Scholar]
- Yang, Y.; Xie, J.R.; Zhao, L.Z.; Huang, P.H.; Zhang, X.H.; Chen, C.; Zhang, B.J.; Wen, L.; Wang, H.; Gao, Z.L.; et al. Breakthrough of natural gas exploration in the beach facies porous dolomite reservoir of Middle Permian Maokou Formation in the Sichuan Basin and its enlightenment: A case study of the tridimensional exploration of Well JT1 in the central-northern Sichuan Basin. Nat. Gas Ind. 2021, 41, 1–9. [Google Scholar]
- Zhu, M.; Huang, S.W.; Song, X.; Wang, X.D.; Shi, J.B.; Tian, X.B.; Yao, Q.Y.; Wang, H. Main controlling factors of the Middle Permian dolomite reservoir and prediction of exploration zone in Tongnan-Hechuan block, Sichuan Basin. China Pet. Explor. 2022, 27, 149–161. [Google Scholar]
- Jiang, Q.C.; Hu, S.Y.; Wang, Z.C.; Chi, Y.L.; Yang, Y.; Lu, W.H.; Wang, H.Z.; Li, Q.F. Paleokarst landform of the weathering crust of Middle Permian Maokou formation in Sichuan basin and selection of exporation regions. Acta Pet. Sin. 2012, 33, 949–960. [Google Scholar]
- Liu, H.; Ma, T.; Tan, X.C.; Zeng, W.; Hu, G.; Xiao, D.; Luo, B.; Shan, S.J.; Su, C.P. Origin of structurally controlled hydrothermal dolomite in epigenetic karst system during shallow burial: An example from Middle Permian Maokou Formation, central Sichuan Basin, SW China. Pet. Explor. Dev. 2016, 43, 916–927. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.L.; Zhang, X.L.; Zhang, X.H.; Xie, C.; Chen, C.; Yang, Y.R.; Gao, Z.L. Restoration of paleokarst geomorphology of Lower Permian Maokou Formation and its petroleum exploration implication in Sichuan Basin. Lithol. Reserv. 2020, 32, 44–55. [Google Scholar]
- Bai, X.J.; Zheng, J.F.; Dai, K.; Hong, S.X.; Duan, J.M.; Liu, Y.M. Petrological, Geochemical and Chronological Characteristics of Dolomites in the Permian Maokou Formation and Constraints to the Reservoir Genesis, Central Sichuan Basin, China. Minerals 2023, 13, 1336. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, W.Z.; Zhang, L.P.; Zhao, Z.J.; Liu, Y.H.; Zhang, B.M.; Yang, Y. Discovery and exploration significance of structure-controlled hydrothermal dolomites in the Middle Permian of the central Sichuan basin. Acta Pet. Sin. 2012, 33, 562–569. [Google Scholar]
- Jiang, Y.Q.; Gu, Y.F.; Li, K.H.; Li, S.; Luo, M.S.; He, B. Space types and origins of hydrothermal dolomite reservoirs in the Middle Permian strata, central Sichuan Basin. Nat. Gas Ind. 2018, 38, 16–24. [Google Scholar]
- Ma, D.B.; Wang, Z.C.; Duan, S.F.; Gao, J.R.; Jiang, Q.C.; Jiang, H.; Zeng, F.Y.; Lu, W.H. Strike-slip faults and their significance for hydrocarbon accumulation in Gaoshiti–Moxi area, Sichuan Basin, SW China. Pet. Explor. Dev. 2018, 45, 795–805. [Google Scholar] [CrossRef]
- Liu, J.Q.; Zheng, H.F.; Liu, B.; Liu, H.G.; Shi, K.B.; Guo, R.T.; Zhang, X.F. Characteristics and genetic mechanism of the dolomite in the Middle Permian Maokou Formation, central Sichuan area. Acta Pet. Sin. 2017, 38, 386–398. [Google Scholar]
- Wang, Z.C.; Jiang, Q.C.; Huang, S.P.; Zhou, H.; Feng, Q.F.; Dai, X.F.; Lu, W.H.; Ren, M.Y. Geological conditions for massive accumulation of natural gas in the Mid-Permian Maokou Fm of the Sichuan Basin. Nat. Gas Ind. 2018, 38, 30–38. [Google Scholar]
- Zhang, Y.; Cao, Q.G.; Luo, K.P.; Li, L.L.; Liu, J.L. Reservoir exploration of the Permian Maokou Formation in the Sichuan Basin and enlightenment obtained. Oil Gas Geol. 2022, 43, 610–620. [Google Scholar]
- Chung, S.L.; Jahn, B.M. Plume-lithosphere interaction in generation of the Emeishan flood basalts at the Permian-Triassic boundary. Geology 1995, 23, 889. [Google Scholar] [CrossRef]
- Courtillot, V.; Jaupart, C.; Manighetti, I. On causal links between flood basalts and continental breakup. Earth Planet. Sci. Lett. 1999, 166, 177–195. [Google Scholar] [CrossRef]
- Cohen, K.M.; Finney, S.M.; Gibbard, P.L.; Fan, J. The ICS International Chronostratigraphic Chart. Episodes 2013, 36, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.G.; He, B.; Chung, S.L.; Menzies, M.A.; Frey, F.A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 2004, 32, 917–920. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Guan, J.P.; Zhong, Y.T. Paleokarst on the top of the Maokou Formation: Further evidence for domal crustal uplift prior to the Emeishan flood volcanism. Lithos 2010, 119, 1–9. [Google Scholar] [CrossRef]
- Shi, Z.; Li, W.; Luo, Q.; Zhang, J.; Wang, Y.; Tian, Y.; Yin, G. Emeishan mantle plume activity and carbon isotope responses in the Middle Permian, South China. J. Asian Earth Sci. 2019, 189, 104145. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Zhang, G.Y.; Wang, H.J.; Wang, S.J.; Wang, Z.C. Basic features of petroleum geology in the superimposed petroliferous basins of China and their research methodologies. Pet. Explor. Dev. 2003, 2, 1–8. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, X.; Jiang, Z. Hydrocarbon Reservoirs Formation, Evolution, Prediction and Evaluation in the Superimposed Basins. Acta Geol. Sin. 2012, 86, 1–103. [Google Scholar]
- Liu, S.G.; Sun, W.; Zhong, Y.; Deng, B.; Song, J.M.; Ran, B.; Luo, Z.L.; Han, K.Y.; Company, G.F. Evolutionary episodes and their characteristics within the Sichuan marine craton basin during Phanerozoic Eon, China. Acta Petrol. Sin. 2017, 33, 1058–1072. [Google Scholar]
- Wei, G.Q.; Wang, Z.H.; Li, J.; Yang, W.; Xie, Z.Y. Characteristics of source rocks, resource potential and exploration direction of Sinian and Cambrian in Sichuan Basin. Nat. Gas Geosci. 2017, 2, 289–302. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhao, W.Z.; Peng, H.Y. Characteristics of multi-source petroleum systems in Sichuan basin. Pet. Explor. Dev. 2002, 29, 26–29. [Google Scholar]
- Zhou, M.F.; Malpas, J.G.; Son, X.Y.; Robinson, P.T.; Sun, M.; Kennedy, A. A temporal link between the Emeishan Large Igneous Province (SW China) and the end-Guadalupian mass extinction. Earth Planet. Sci. Lett. 2002, 196, 113–122. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Huang, X.L.; Luo, Z.Y.; Shi, Y.R.; Yang, Q.J.; Yu, S.Y. Age and duration of the Emeishan flood volcanism, SW China: Geochemistry and SHRIMP zircon U–Pb dating of silicic ignimbrites, post-volcanic Xuanwei Formation and clay tuff at the Chaotian section. Earth Planet. Sci. Lett. 2007, 255, 306–323. [Google Scholar] [CrossRef]
- Shellnutt, J.G.; Usuki, T.; Kennedy, A.K.; Chiu, H.Y. A lower crust origin of some flood basalts of the Emeishan large igneous province, SW China. J. Asian Earth Sci. 2015, 109, 74–85. [Google Scholar] [CrossRef]
- Hei, H.X.; Su, S.G.; Wang, Y.; Mo, X.X.; Luo, Z.H.; Liu, W.G. Rhyolites in the Emeishan large igneous province (SW China) with implications for plume-related felsic magmatism. J. Asian Earth Sci. 2018, 164, 344–365. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.; Santosh, M.; Linsu, L.; Han, L.; Liu, W. Late Permian basalts in the Yanghe area, eastern Sichuan Province, SW China: Implications for the geodynamics of the Emeishan flood basalt province and Permian global mass extinction. J. Asian Earth Sci. 2017, 134, 293–308. [Google Scholar] [CrossRef]
- Xu, Y.; Chung, S.L.; Jahn, B.M.; Wu, G. Petrologic and geochemical constraints on the petrogenesis of Permian–Triassic Emeishan flood basalts in southwestern China. Lithos 2001, 58, 145–168. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Li, H.B.; Zhang, Z.C.; Richard, E. Giant radiating mafic dyke swarm of the Emeishan Large Igneous Province: Identifying the mantle plume centre. Terra Nova 2015, 27, 247–257. [Google Scholar] [CrossRef]
- Zhou, M.F.; Wang, Z.C.; Zhao, W.W.; Qi, L.; Zhao, Z.; Zhou, J.; Huang, Z.; Chen, W.T. A reconnaissance study of potentially important scandium deposits associated with carbonatite and alkaline igneous complexes of the Permian Emeishan Large Igneous Province, SW China. J. Asian Earth Sci. 2022, 236, 105309. [Google Scholar] [CrossRef]
- Xiao, L.; Xu, Y.G.; Chung, S.L.; He, B.; Mei, H.J. Chemostratigraphic Correlation of Upper Permian Lavas from Yunnan Province, China: Extent of the Emeishan Large Igneous Province. Int. Geol. Rev. 2003, 45, 753–766. [Google Scholar] [CrossRef]
- Xu, J.F.; Suzuki, K.; Xu, Y.G.; Mei, H.J.; Jie, L. Os, Pb, and Nd isotope geochemistry of the Permian Emeishan continental flood basalts: Insights into the source of a large igneous province. Geochim. Et Cosmochim. Acta 2007, 71, 2104–2119. [Google Scholar] [CrossRef]
- Ganino, C.; Arndt, N.T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 2010, 37, 323–326. [Google Scholar] [CrossRef]
- Huang, H.; Huyskens, M.H.; Yin, Q.Z.; Cawood, P.A.; Hou, M.; Yang, J.; Xiong, F.; Du, Y.; Yang, C. Eruptive tempo of Emeishan large igneous province, southwestern China and northern Vietnam: Relations to biotic crises and paleoclimate changes around the Guadalupian-Lopingian boundary. Geology 2022, 50, 1083–1087. [Google Scholar] [CrossRef]
- Wignall, P.B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 2001, 53, 1–33. [Google Scholar] [CrossRef]
- Knoll, A.H.; Bambach, R.K.; Payne, J.L.; Pruss, S.; Fischer, W.W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 2007, 256, 295–313. [Google Scholar] [CrossRef]
- Ogden, D.E.; Sleep, N.H. Explosive eruption of coal and basalt and the end-Permian mass extinction. Proc. Natl. Acad. Sci. USA 2012, 109, 59–62. [Google Scholar] [CrossRef]
- Penn, J.L.; Deutsch, C.; Payne, J.L.; Sperling, E.A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 2018, 362, aat1327. [Google Scholar] [CrossRef] [PubMed]
- Cribb, A.T.; Bottjer, D.J. Complex marine bioturbation ecosystem engineering behaviors persisted in the wake of the end-Permian mass extinction. Sci. Rep. 2020, 10, 203. [Google Scholar] [CrossRef]
- Zhang, Z. Geochemistry of Picritic and Associated Basalt Flows of the Western Emeishan Flood Basalt Province. China J. Petrol. 2006, 47, 1997–2019. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhi, X.; Lei, C.; Saunders, A.D.; Reichow, M.K. Re–Os isotopic compositions of picrites from the Emeishan flood basalt province, China. Earth Planet. Sci. Lett. 2008, 276, 30–39. [Google Scholar] [CrossRef]
- Meng, F.; Tian, Y.; Kerr, A.C.; Wu, Z.; Xu, Q.; Du, Q.; Zhou, Y.; Liu, J. Geochemistry and petrogenesis of Late Permian basalts from the Sichuan Basin, SW China: Implications for the geodynamics of the Emeishan mantle plume. J. Asian Earth Sci. 2023, 241, 105477. [Google Scholar] [CrossRef]
- Cox, K.G. The role of mantle plumes in the development of continental drainage patterns. Nature 1989, 342, 873–877. [Google Scholar] [CrossRef]
- Campbell, I.H.; Griffiths, R.W. Implications of mantle plume structure for the evolution of flood basalts. Earth Planet. Sci. Lett. 1990, 99, 79–93. [Google Scholar] [CrossRef]
- Campbell, I.H. Large Igneous Provinces and the Mantle Plume Hypothesis. Elements 2005, 1, 265–269. [Google Scholar] [CrossRef]
- Sleep, N.H. Mantle plumes from top to bottom. Earth-Sci. Rev. 2006, 77, 231–271. [Google Scholar] [CrossRef]
- Bryan, S.E.; Ernst, R.E. Revised definition of Large Igneous Provinces (LIPs). Earth Sci. Rev. 2008, 86, 175–202. [Google Scholar] [CrossRef]
- He, B.; Xu, Y.G.; Chung, S.L.; Long, X.; Wang, Y. Sedimentary evidence for a rapid, kilometer-scale crustal doming prior to the eruption of the Emeishan flood basalts. Earth Planet. Sci. Lett. 2003, 213, 391–405. [Google Scholar] [CrossRef]
- Li, S.G. Variscan orogeny of the southeast of China. Bull. Geol. Soc. China 1931, 11, 200–217. [Google Scholar]
- He, B.; Xu, Y.G.; Wang, Y.M.; Xiao, L. Nature of the Dongwu Movement and Its Temporal and Spatial Evolution. Earth Sci. 2005, 30, 89–96. [Google Scholar]
- Chang, W.Y.; Sun, T.C.; Wu, L.P. Stratigraphic unconformity in Kuangsi. Bull. Geol. Soc. China 1941, 21, 131–156. [Google Scholar] [CrossRef]
- Hu, H.T. Discussing the horizon of the Mingshan formation in the South of Anhui Province and the crustal variation between the Lower and Upper Permian. Geol. Rev. 1951, 6, 25–31. [Google Scholar]
- Hu, S.Z. Discussion on the boundary problem between the Upper and Lower Permian in South China. Chin. Geol. 1986, 12, 14–16. [Google Scholar]
- Hu, S.Z. On the event of Dongwu Movement and its relation with Permian subclassification. J. Stratigr. 1994, 18, 309–315. [Google Scholar]
- Feng, S.N. New knowledge on Dongwu movement. Geoscience 1991, 5, 378–384. [Google Scholar]
- Li, X.B.; Zeng, X.W.; Wang, C.S.; Liu, A.; Bai, Y.S. Sedimentary response to the Dongwu movement: A case of the unconformity on top of the Permian Maokou Fm in the western Hubei-Hunan and neighboring areas. J. Stratigr. 2011, 35, 299–304. [Google Scholar]
- Su, W.; Hu, S.Y.; Jiang, Q.C.; Zhang, J.; Ren, M.Y. Sedimentary responses to the Dongwu movement and the influence of the Emeishan mantle plume in Sichuan Basin, Southwest China: Significance for petroleum geology. Carbonates Evaporites 2020, 35, 108. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Zhou, H.; Chen, X.; Liu, Y.H.; Zhang, Y.B.; Liu, Y.E.; Yang, Y. Sequence lithofacies paleogeography and favorable exploration zones of the Permian in Sichuan Basin and adjacent areas. Acta Pet. Sin. 2012, 33 (Suppl. S2), 35–51. [Google Scholar]
- Wang, Y.; Jin, Y. Permian palaeogeographic evolution of the jiangnan basin, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 160, 35–44. [Google Scholar]
- Brigaud, B.; Durlet, C.; Deconinck, J.F.; Vincent, B.; Thierry, J.; Trouiller, A. The origin and timing of multiphase cementa-tion in carbonates: Impact of regional scale geodynamic events on the Middle Jurassic Limestones diagenesis (Paris Basin, France). Sediment. Geol. 2009, 222, 161–180. [Google Scholar] [CrossRef]
- Taylor, S.R.; Mclennan, S.M. The continental crust: Its composition and evolution. J. Geol. 1985, 94, 57–72. [Google Scholar]
- Webb, G.E.; Kamber, B.C. Rare earth elements in Holocene reefal microbialites: A new shallow seawater proxy. Geochim. Et Cosmochim. Acta 2000, 64, S0016–S703700400. [Google Scholar] [CrossRef]
- German, C.R.; Elderfield, H. Application of the Ce anomaly as a paleoredox indicator: The ground rules. Paleoceanography 1990, 5, 823–833. [Google Scholar] [CrossRef]
- Bolhar, R.; Van Kranendonk, M.J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 2007, 155, 229–250. [Google Scholar] [CrossRef]
- Kamber, B.S.; Webb, G.E. The geochemistry of late Archaean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochim. Et Cosmochim. Acta 2001, 65, 2509–2525. [Google Scholar] [CrossRef]
- Shields, G.A.; Webb, G.E. Has the REE composition of seawater changed over geological time? Chem. Geol. 2004, 204, 103–107. [Google Scholar] [CrossRef]
- Michard, A.; Albarede, F. The REE content of some hydrothermal fluids. Chem. Geol. 1986, 55, 51–60. [Google Scholar] [CrossRef]
- Veizer, J.; Ala, D.; Azmy, K.; Bruckschen, P.; Buhl, D.; Bruhn, F.; Carden, G.A.F.; Diener, A.; Stefan, E.; Godderis, Y.; et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 1999, 161, 59–88. [Google Scholar]
- Sengor, A.M.C. Elevation as indicator of mantle-plume activity. Spec. Pap. Geol. Soc. Am. 2001, 352, 183–225. [Google Scholar]
- Campbell, I.H. Testing the plume theory. Chem. Geol. 2007, 241, 153–176. [Google Scholar] [CrossRef]
- Guo, Z.J.; Zhu, B.; Du, W.; Liu, R.C.; Liu, D.D. No pre-eruptive uplift in the Emeishan large igneous province: New evidences from its ‘inner zone’, Dali area, Southwest China. J. Volcanol. Geotherm. Res. 2014, 269, 57–67. [Google Scholar] [CrossRef]
- Jerram, D.A.; Widdowson, M.; Wignall, P.B.; Sun, Y.D.; Lai, X.L.; Bond, D.P.G.; Torsvik, T.H. Submarine palaeoenvironments during Emeishan flood basalt volcanism, SW China: Implications for plume-lithosphere interaction during the Capitanian, Middle Permian (‘end Guadalupian’) extinction event. Palaeogeogr. Palaeoclimatol. Palaeoecol. Int. J. Geo-Sci. 2016, 441, 65–73. [Google Scholar] [CrossRef]
- Sheth, H.C. Flood basalts and large igneous provinces from deep mantle plumes: Fact, fiction, and fallacy. Tectonophysics 1999, 311, 1–29. [Google Scholar] [CrossRef]
- Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere. Chem. Geol. 2007, 241, 282–318. [Google Scholar] [CrossRef]
- Xu, Y.G.; Luo, Z.Y.; Huang, X.L.; He, B.; Xiao, L.; Xie, L.W.; Shi, Y.R. Zircon U–Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochim. Et Cosmochim. Acta 2008, 72, 3084–3104. [Google Scholar] [CrossRef]
- Sobolev, S.S.; Alexander, V.S.; Dmitry, V.K.; Nadezhda, A.K.; Alexey, G.P.; Nicholas, T.A.; Viktor, A.R.; Yuri, R.V. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 2011, 477, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Gaschnig, R.M.; Vervoort, J.D.; Lewis, R.S.; Tikoff, B. Probing for Proterozoic and Archean crust in the northern U.S. Cordillera with inherited zircon from the Idaho batholith. Geol. Soc. Am. Bull. 2013, 125, 73–88. [Google Scholar] [CrossRef]
- Mitchell, N.A.; Yanites, B.J. Spatially Variable Increase in Rock Uplift in the Northern U.S. Cordillera Recorded in the Distribution of River Knickpoints and Incision Depths. J. Geophys. Res. Earth Surf. 2019, 124, 1238–1260. [Google Scholar] [CrossRef]
- Davies, G.F.; Richards, M.A. Mantle convection. J. Geol. 1992, 100, 151–206. [Google Scholar] [CrossRef]
- Hill, R.I. Mantle plumes and continental tectonics. Lithos 1993, 30, 193–206. [Google Scholar] [CrossRef]
- Loper, D.E.; Stacey, F.D. The dynamical and thermal structure of deep mantle plumes. Phys. Earth Planet. Inter. 1983, 33, 304–317. [Google Scholar] [CrossRef]
- Hofmann, F.A.W. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 2009, 100, 151–206. [Google Scholar] [CrossRef]
- Ali, J.; Fitton, J.; Herzberg, C. Emeishan large igneous province (SW China) and the mantle plume up-doming hypothesis. J. Geol. Soc. 2010, 167, 953–959. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Xu, M.; Yuan, Y.S.; Zhao, Y.Q.; Shan, J.N. Palaeogeothermal response and record of the effusing of Emeishan basalts in the Sichuan basin. Chin. Sci. Bull. 2010, 55, 949–956. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Hu, S.B.; Qiu, N.S.; Jiang, Q.; Rao, S.; Liu, S. Geothermal constraints on Emeishan mantle plume magmatism: Paleotemperature reconstruction of the Sichuan Basin, SW China. Int. J. Earth Sci. 2016, 107, 71–88. [Google Scholar] [CrossRef]
- Li, T.; Zhu, D.C.; Yang, M.L.; Li, P.P.; Zou, Y.H. Influence of hydrothermal activity on the Maokou Formation dolostone in the central and western Sichuan Basin. Oil Gas Geol. 2021, 42, 639–651. [Google Scholar] [CrossRef]
- Li, S.J.; Yang, T.B.; Han, Y.Q.; Gao, P.; Wo, Y.J.; He, Z.L. Hydrothermal dolomitization and its role in improving Middle Permian reservoirs for hydrocarbon accumulation, Sichuan Basin. Oil Gas Geol. 2021, 42, 1265–1280. [Google Scholar]
- Fölling, P.G.; Frimmel, H.E. Chemostratigraphic correlation of carbonate successions in the Gariep and Saldania Belts, Namibia and South Afric. Basin Res. 2002, 14, 69–88. [Google Scholar] [CrossRef]
- Motte, G.; Hoareau, G.; Callot, J.P.; R’evillon, S.; Piccoli, F.; Calassou, S.; Gaucher, E.C. Rift and salt-related multi-phase dolo-mitization: Example from the northwestern Pyrenees. Mar. Pet. Geol. 2021, 126, 104932. [Google Scholar] [CrossRef]
- Tian, X.S.; Shi, Z.J.; Yin, G.; Wang, Y.; Tan, Q. Carbonate diagenetic products and processes from various diagenetic environ-ments in Permian paleokarst reservoirs: A case study of the limestone strata of Maokou formation in Sichuan Basin, South China. Carbonates Evaporites 2017, 32, 15–230. [Google Scholar] [CrossRef]
Sample ID | Well | Lithology | δ18OPDB‰ | δ13CPDB‰ | 87Sr/86Sr | Elemental Analysis | ||
---|---|---|---|---|---|---|---|---|
Sr/ppm | Mn/ppm | Mn/Sr | ||||||
4527 | HS2 | LIM | −6.74 | 3.85 | 0.707317 | 389.98 | 61.94 | 0.16 |
4531 | HS2 | LIM | −7.77 | 4.04 | 0.707231 | 352.66 | 80.33 | 0.23 |
4533 | HS2 | LIM | −6.54 | 1.58 | 0.707015 | 368.06 | 123.94 | 0.34 |
4543 | HS4 | LIM | −8.14 | 4.53 | 0.707266 | 422.83 | 43.03 | 0.10 |
4545 | HS4 | LIM | −7.92 | 4.24 | 0.707330 | 518.31 | 47.57 | 0.09 |
4547 | HS4 | LIM | −6.54 | 2.64 | 0.707178 | 384.35 | 121.95 | 0.32 |
2028 | HS6 | LIM | −6.82 | 3.66 | 0.707362 | 473.70 | 10.10 | 0.02 |
4548 | HS4 | LD | −7.60 | 4.10 | 0.707380 | 222.66 | 92.75 | 0.41 |
4549 | HS4 | LD | −7.64 | 4.07 | 0.707324 | 281.64 | 78.71 | 0.28 |
4550 | HS4 | GD | −7.42 | 3.87 | 0.707676 | 133.34 | 170.08 | 1.27 |
4551 | HS4 | GD | −5.44 | 3.41 | 0.707264 | 746.21 | 23.39 | 0.03 |
2024 | HS6 | GD | −8.13 | 4.06 | 0.707696 | 84.94 | 31.27 | 0.37 |
2025 | HS6 | GD | −7.91 | 4.03 | 0.707953 | 65.57 | 31.21 | 0.47 |
2026 | HS6 | GD | −8.12 | 3.89 | 0.707908 | 68.52 | 40.73 | 0.59 |
2029 | HS6 | GD | −8.18 | 3.88 | 0.707879 | 66.30 | 31.44 | 0.47 |
2027 | HS6 | SD | −7.62 | 5.05 | 0.708225 | 120.00 | 48.11 | 0.40 |
ID | Well | Lithology | La | Ce | Pr | Nd | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | Eu/Eu* |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4527 | HS2 | LIM | 0.00569 | 0.00459 | 0.00481 | 0.00476 | 0.00554 | 0.00491 | 0.0069 | 0.00605 | 0.0063 | 0.00775 | 0.00804 | 0.00861 | 0.00748 | 0.00777 | 0.85992 |
4531 | HS2 | LIM | 0.00856 | 0.00656 | 0.00767 | 0.00771 | 0.00943 | 0.00924 | 0.01363 | 0.01346 | 0.01408 | 0.01557 | 0.01671 | 0.0181 | 0.01578 | 0.01658 | 0.85866 |
4533 | HS2 | LIM | 0.00775 | 0.00519 | 0.00569 | 0.00612 | 0.0066 | 0.0087 | 0.01147 | 0.01083 | 0.01221 | 0.01473 | 0.01513 | 0.01588 | 0.01328 | 0.0136 | 1.08843 |
4543 | HS4 | LIM | 0.00509 | 0.0045 | 0.00468 | 0.00467 | 0.00559 | 0.00578 | 0.00667 | 0.00617 | 0.00682 | 0.00731 | 0.0084 | 0.00924 | 0.00781 | 0.0078 | 0.99944 |
4545 | HS4 | LIM | 0.01847 | 0.01744 | 0.0188 | 0.01882 | 0.02456 | 0.02382 | 0.02893 | 0.02829 | 0.02959 | 0.03231 | 0.03406 | 0.03871 | 0.03394 | 0.03548 | 0.92358 |
4547 | HS4 | LIM | 0.01281 | 0.01134 | 0.01209 | 0.01164 | 0.01353 | 0.01271 | 0.01589 | 0.01543 | 0.01698 | 0.01784 | 0.01937 | 0.01965 | 0.01896 | 0.02048 | 0.89775 |
2028 | HS6 | LIM | 0.01345 | 0.0118 | 0.01249 | 0.01222 | 0.01469 | 0.01574 | 0.01694 | 0.0151 | 0.01494 | 0.01728 | 0.01836 | 0.01768 | 0.01482 | 0.01638 | 1.06161 |
4548 | HS4 | LD | 0.01451 | 0.01296 | 0.01389 | 0.0136 | 0.01586 | 0.01446 | 0.01908 | 0.01757 | 0.0184 | 0.02096 | 0.02266 | 0.02582 | 0.02404 | 0.02438 | 0.88046 |
4549 | HS4 | LD | 0.02168 | 0.01972 | 0.02008 | 0.01921 | 0.02292 | 0.0228 | 0.02608 | 0.02609 | 0.02734 | 0.02999 | 0.0294 | 0.03314 | 0.02836 | 0.03063 | 0.95138 |
4550 | HS4 | GD | 0.02281 | 0.0206 | 0.02246 | 0.02181 | 0.02527 | 0.02198 | 0.0287 | 0.02722 | 0.02952 | 0.03142 | 0.03515 | 0.03841 | 0.03498 | 0.03741 | 0.84796 |
4551 | HS4 | GD | 0.01967 | 0.02041 | 0.02088 | 0.02019 | 0.02233 | 0.02221 | 0.01974 | 0.01733 | 0.01623 | 0.01566 | 0.01602 | 0.01793 | 0.01601 | 0.01626 | 1.07405 |
2024 | HS6 | GD | 0.01392 | 0.00902 | 0.00857 | 0.00739 | 0.00673 | 0.01111 | 0.00857 | 0.00877 | 0.00933 | 0.01013 | 0.01174 | 0.01366 | 0.01168 | 0.01257 | 1.50055 |
2025 | HS6 | GD | 0.0048 | 0.00455 | 0.00484 | 0.00501 | 0.00629 | 0.0061 | 0.00815 | 0.00772 | 0.00846 | 0.00989 | 0.01161 | 0.01298 | 0.01168 | 0.00975 | 0.9017 |
2026 | HS6 | GD | 0.00648 | 0.00562 | 0.00586 | 0.00576 | 0.00624 | 0.00716 | 0.00835 | 0.0084 | 0.00819 | 0.01005 | 0.01067 | 0.0115 | 0.01081 | 0.0096 | 1.03051 |
2029 | HS6 | GD | 0.01425 | 0.01021 | 0.00941 | 0.00824 | 0.00797 | 0.009 | 0.00934 | 0.00919 | 0.00969 | 0.01034 | 0.01284 | 0.01367 | 0.01099 | 0.01222 | 1.07478 |
2027 | HS6 | SD | 0.0108 | 0.0093 | 0.01021 | 0.01068 | 0.01177 | 0.01224 | 0.01335 | 0.01406 | 0.0146 | 0.01806 | 0.01837 | 0.01589 | 0.01579 | 0.01461 | 0.97714 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Li, X.; Guo, Z.; Zhang, L.; Zhu, M.; Zhou, M.; Huang, Y.; Pei, X.; Wu, Y.; Li, W.; et al. The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region. Minerals 2024, 14, 129. https://doi.org/10.3390/min14020129
Guo Q, Li X, Guo Z, Zhang L, Zhu M, Zhou M, Huang Y, Pei X, Wu Y, Li W, et al. The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region. Minerals. 2024; 14(2):129. https://doi.org/10.3390/min14020129
Chicago/Turabian StyleGuo, Qimin, Xizhe Li, Zhenhua Guo, Lin Zhang, Mao Zhu, Mengfei Zhou, Yize Huang, Xiangyang Pei, Yunlong Wu, Wen Li, and et al. 2024. "The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region" Minerals 14, no. 2: 129. https://doi.org/10.3390/min14020129
APA StyleGuo, Q., Li, X., Guo, Z., Zhang, L., Zhu, M., Zhou, M., Huang, Y., Pei, X., Wu, Y., Li, W., Yan, M., Du, S., & Zhan, H. (2024). The Effect of the Emeishan Mantle Plume on the Genetic Mechanism of the Maokou Formation Reservoir in the Central Sichuan Region. Minerals, 14(2), 129. https://doi.org/10.3390/min14020129