Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria
Abstract
:1. Introduction
2. Geological Settings
3. Samples and Methods
3.1. Sampling
3.2. Methods
4. Results
4.1. Mineralogy of the Kaolin Deposits
4.2. SEM-EDS Analysis
4.3. Major Geochemical Composition and Degree of Weathering
4.4. Trace Element Concentration
4.5. Rare Earth Element (REE) Concentration
5. Discussion
5.1. Alteration and Element Behavior during Kaolinization
5.2. Genesis of the Kaolin Deposit
5.3. Grade, Quality, and Economic Significance
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christidis, G.E. Assessment of Industrial Clays. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 425–449. [Google Scholar] [CrossRef]
- Harvey, C.C.; Murray, H.H. Industrial clays in the 21st century: A perspective of exploration, technology and utilization. Appl. Clay Sci. 1997, 11, 285–310. [Google Scholar] [CrossRef]
- Murray, H.H. Traditional and new applications for kaolin, smectite, and palygorskite: A general overview. Appl. Clay Sci. 2000, 17, 207–221. [Google Scholar] [CrossRef]
- Dill, H.G. Kaolin: Soil, rock and ore: From the mineral to the magmatic, sedimentary and metamorphic environments. Earth-Sci. Rev. 2016, 161, 16–129. [Google Scholar] [CrossRef]
- Tangari, A.C.; Scarciglia, F.; Piluso, E.; Marinangeli, L.; Pompilio, L. Role of weathering of pillow basalt, pyroclastic input and geomorphic processes on the genesis of the Monte Cerviero upland soils (Calabria, Italy). CATENA 2018, 171, 299–315. [Google Scholar] [CrossRef]
- Tangari, A.C.; Le Pera, E.; Andò, S.; Garzanti, E.; Piluso, E.; Marinangeli, L.; Scarciglia, F. Soil-formation in the central Mediterranean: Insight from heavy minerals. CATENA 2021, 197, 104998. [Google Scholar] [CrossRef]
- Guggenheim, S.; Adams, J.M.; Bain, D.C.; Bergaya, F.; Brigatti, M.F.; Drits, V.A.; Formoso, M.L.L.; Galán, E.; Kogure, T.; Stanjek, H. Summary of recommendations of Nomenclature Committees relevant to clay mineralogy: Report of the association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays Clay Miner. 2006, 54, 761–772. [Google Scholar] [CrossRef]
- Murray, H.H. Clays. In Ullmann’s Encyclopedia of Industrial Chemistry, 1st ed.; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar] [CrossRef]
- Ekosse, G.-I.E. Kaolin deposits and occurrences in Africa: Geology, mineralogy and utilization. Appl. Clay Sci. 2010, 50, 212–236. [Google Scholar] [CrossRef]
- Murray, H.H. Chapter 3 Geology and Location of Major Industrial Clay Deposits. In Developments in Clay Science; Murray, H.H., Ed.; Applied Clay Mineralogy; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 33–65. [Google Scholar] [CrossRef]
- Awad, M.; Galindo, A.; Setti, M.; El-Rahmany, M.; Viseras, C. Kaolinite in pharmaceutics and biomedicine. Int. J. Pharm. 2017, 533, 34–48. [Google Scholar] [CrossRef]
- Onyemaobi, O.O.; Nekede, F.P.; Mark, U. Mineral Resources Exploitation, Processing and Utilization-A Sine Qua Non for Nigeria’s Metallurgical Industrial Development. Inaug. Lect. Ser. 2002, 5, 48. [Google Scholar]
- Oyebanjo, O.M.; Ekosse, G.E.; Odiyo, J.O. Mineral Constituents and Kaolinite Crystallinity of the < 2 μm Fraction of Cretaceous-Paleogene/Neogene Kaolins from Eastern Dahomey and Niger Delta Basins, Nigeria. Open Geosci. 2018, 10, 157–166. [Google Scholar] [CrossRef]
- Akinyele, J.O.; Odunfa, S.O.; Famoye, A.A.; Kuye, S.I. Structural behaviour of metakaolin infused concrete structure. Niger. J. Technol. 2017, 36, 331–338. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Abdulkareem, S.A.; Emenike, E.C.; Abdulkareem, M.T.; Iwuozor, K.O.; Amoloye, M.A.; Ahmed, I.I.; Awokunle, O.E. Development and characterization of microstructural and mechanical properties of hybrid polystyrene composites filled with kaolin and expanded polyethylene powder. Results Eng. 2022, 14, 100423. [Google Scholar] [CrossRef]
- Adeniyi, A.G.; Iwuozor, K.O.; Emenike, E.C. Material Development Potential of Nigeria’s Kaolin. Chem. Afr. 2023, 6, 1709–1725. [Google Scholar] [CrossRef]
- Fang, Q.; Hong, H.; Zhao, L.; Furnes, H.; Lu, H.; Han, W.; Liu, Y.; Jia, Z.; Wang, C.; Yin, K.; et al. Tectonic uplift-influenced monsoonal changes promoted hominin occupation of the Luonan Basin: Insights from a loess-paleosol sequence, eastern Qinling Mountains, central China. Quat. Sci. Rev. 2017, 169, 312–329. [Google Scholar] [CrossRef]
- Daspan, R.I.; Yakubu, J.A.; Taiwo, A.O. A preliminary chemical and physical assessment of the kuba kaolin deposit, Jos Plateau (North-Central Nigera). Cont. J. Earth Sci. 2009, 4, 1–11. [Google Scholar]
- Christopher, O.S.; Johnson, O.O.; Bernard, G.R. Mineralogy and pedogenesis of Kuba clays within Ropp Complex, Jos Plateau, Northcentral Nigeria. Int. J. Earth Sci. Eng. 2013, 6, 434–441. [Google Scholar]
- Odewumi, S.C.; Adekeye, J.I.D.; Ojo, O.J. Trace and rare earth elements geochemistry of Kuba (Major porter) and Nahuta clays, Jos Plateau, northcentral Nigeria: Implications for provenance. J. Min. Geol. 2015, 50, 71–82. [Google Scholar]
- Odewumi, S.C. Major and Trace Elements Geochemical Characteristics of Nahuta Clay, Jos Plateau, Northcentral Nigeria: Implications for Paleoweathering Proxy. NSUK J. Sci. Technol. NJST 2020, 7, 71–76. [Google Scholar]
- Oyawoye, M.O.; Hirst, D.M. Occurrence of a montmorillonite mineral in the Nigerian younger granites at Ropp, Plateau Province, Northern Nigeria. Clay Miner. Bull. 1964, 5, 427–433. [Google Scholar] [CrossRef]
- Cravero, F.; Gonzalez, I.; Galan, E.; Dominguez, E. Geology, mineralogy, origin and possible applications of some Argentinian kaolins in the Neuquen basin. Appl. Clay Sci. 1997, 12, 27–42. [Google Scholar] [CrossRef]
- Buchannan, M.S.; Macleod, W.N.; Turner, D.C. The geology of the Jos Plateau. Geol. Surv. Niger. Bull. 1971, 32, 107–119. [Google Scholar]
- Pastor, J.; Turaki, U.M. Primary mineralization in Nigerian ring complexes and its economic significance. J. Afr. Earth Sci. (1983) 1985, 3, 223–227. [Google Scholar] [CrossRef]
- Kamaunji, V.; Wang, L.-X.; Bala Girei, M.; Zhu, Y.-X.; Li, L.; Vincent, V.; Amuda, A. Petrogenesis and tectonic implication of the alkaline ferroan granites from Ropp complex, north-central Nigeria: Clues from zircon chemistry, U–Pb dating, and Lu–Hf isotope. Geol. J. 2022, 58, 21–50. [Google Scholar] [CrossRef]
- Olasehinde, A.; Ashano, E.; Singh, G. Structural Analysis the Ropp Complex, North Central Nigeria, using Magnetic Anomaly and Landsat Etm Imagery. Cont. J. Earth Sci 2012, 7, 1–8. [Google Scholar]
- Amuda, A.; Yang, X.; Deng, J.; Faisal, M.; Cao, J.; Ibrahim Bute, S.; Bala Girei, M.; Elatikpo, M. Petrogenesis of the peralkaline Dutsen Wai and Ropp complexes in the Nigerian younger granites: Implications for crucial metal enrichments. Int. Geol. Rev. 2020, 63, 2057–2081. [Google Scholar] [CrossRef]
- Jacobson, R.R.E.; Macleod, W.N.; Black, R. Ring-complexes in the younger granite province of northern Nigeria. Geol. Soc. Lond. Mem. 1958, 1, 78. [Google Scholar]
- Srodon, J. Identification and quantitative analysis of clay minerals. Handb. Clay Sci. 2006, 1, 765–787. [Google Scholar]
- Hillier, S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation. Clay Miner. 2000, 35, 291–302. [Google Scholar] [CrossRef]
- Hinckley, D.N. Variability in ‘crystallinity’ values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays Clay Miner. 1962, 11, 229–235. [Google Scholar] [CrossRef]
- Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol. 1988, 55, 319–322. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Cox, R.; Lowe, D.R.; Cullers, R. The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim. Cosmochim. Acta 1995, 59, 2919–2940. [Google Scholar] [CrossRef]
- Hong, H.; Wang, J.; Wang, C.; Liu, C.; Algeo, T.J.; Zhao, L.; Zhou, L.; Zhang, D.; Fang, Q. Clay and Fe (oxyhydr)oxide mineralogy in the basalt weathering profile in Hainan (southern China): Implications for pedogenesis process. Clays Clay Miner. 2024, 72, e8. [Google Scholar] [CrossRef]
- Bloodworth, A.J.; Highley, D.E.; Mitchell, C.J. Industrial minerals laboratory manual: Kao-lin. Br. Geol. Surv. Tech. Rep. 1993, 1, WG/93/1. [Google Scholar]
- Jepson, W.B. Kaolins: Their properties and uses. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1984, 311, 411–432. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M.; McLennan, S.M.; Keays, R.R. Effects of Chemical Weathering and Sorting on the Petrogenesis of Siliciclastic Sediments, with Implications for Provenance Studies. J. Geol. 1996, 104, 525–542. [Google Scholar] [CrossRef]
- Ekosse, G. Provenance of the Kgwakgwe kaolin deposit in Southeastern Botswana and its possible utilization. Appl. Clay Sci. 2001, 20, 137–152. [Google Scholar] [CrossRef]
- Highley, D.E. China Clay. Br. Geol. Surv. Lond. 1984, 26, NT26. [Google Scholar]
- Shao, J.; Yang, S.; Li, C. Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments. Sediment. Geol. 2012, 265-266, 110–120. [Google Scholar] [CrossRef]
- Bukalo, N.N.; Ekosse, G.-I.E.; Odiyo, J.O.; Ogola, J.S. Geochemistry of Selected Kaolins from Cameroon and Nigeria. Open Geosci. 2017, 9, 600–612. [Google Scholar] [CrossRef]
- Nesbitt, H.; Young, G. Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochim. Cosmochim. Acta 1984, 48, 1523–1534. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Formation and Diagenesis of Weathering Profiles. J. Geol. 1989, 97, 129–147. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Petrogenesis of sediments in the absence of chemical weathering: Effects of abrasion and sorting on bulk composition and mineralogy. Sedimentology 1996, 43, 341–358. [Google Scholar] [CrossRef]
- Annon Kaolin in the UK, English China clay deposits on its lead-in world paper. Indones. Min. 1972, 52, 9–29.
- Singer, F.; Sonja, S.S. Industrial Ceramics; Chapman and Hall: London, UK, 1971. [Google Scholar]
- Parker, E.R. For Engineers and Scientists. In Material Data Book; McGraw Hill: New York, NY, USA, 1967. [Google Scholar]
- Harben, P.W. The Industrial Minerals Handybook: A Guide to Markets, Specifications, & Prices, 3rd ed.; Industrial Minerals Information, Ltd.: Surrey, UK, 1999. [Google Scholar]
- Lopezgalindo, A.; Viseras, C.; Cerezo, P. Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products. Appl. Clay Sci. 2007, 36, 51–63. [Google Scholar] [CrossRef]
- RMRDC. Raw Materials Research and Development Council (RMRDC) Multidisciplinary Committee Techno-Economic Survey (MCTS)Report; Chemicals and Pharmaceutical Sector: Abuja, Nigeria, 2003; pp. 16–69.
- Dill, H.G.; Bosse, H.-R.; Henning, K.-H.; Fricke, A.; Ahrendt, H. Mineralogical and chemical variations in hypogene and supergene kaolin deposits in a mobile fold belt the Central Andes of northwestern Peru. Miner. Depos. 1997, 32, 149–163. [Google Scholar] [CrossRef]
- Thompson, R.N. Magmatism of the British Tertiary Volcanic Province. Scott. J. Geol. 1982, 18, 49–107. [Google Scholar] [CrossRef]
- Boynton, W.V. Chapter 3—Cosmochemistry of the Rare Earth Elements: Meteorite Studies. In Developments in Geochemistry; Henderson, P., Ed.; Rare Earth Element Geochemistry; Elsevier: Amsterdam, The Netherlands, 1984; Volume 2, pp. 63–114. [Google Scholar]
- Ariffin, K.S.; Rahman, H.A.; Hussin, H.; Hadi, K.A.A. The genesis and characteristics of primary kaolinitic clay occurrence at Bukit Lampas, Simpang Pulai, Ipoh. Bull. Geol. Soc. Malays. 2008, 54, 9–16. [Google Scholar] [CrossRef]
- Karadağ, M.M.; Küpeli, Ş.; Arýk, F.; Ayhan, A.; Zedef, V.; Döyen, A. Rare earth element (REE) geochemistry and genetic implications of the Mortaş bauxite deposit (Seydişehir/Konya–Southern Turkey). Geochemistry 2009, 69, 143–159. [Google Scholar] [CrossRef]
- Abedini, A.; Calagari, A.A. Geochemical characteristics of the Abgarm kaolin deposit, NW Iran. Neues Jahrb. Fur Geol. Und Palaontol.-Abh. 2015, 278, 335–350. [Google Scholar] [CrossRef]
- Fernández-Caliani, J.; Galán, E.; Aparicio, P.; Miras, A.; Márquez, M. Origin and geochemical evolution of the Nuevo Montecastelo kaolin deposit (Galicia, NW Spain). Appl. Clay Sci. 2010, 49, 91–97. [Google Scholar] [CrossRef]
- McLennan, S.M.; Taylor, S.R. Sedimentary Rocks and Crustal Evolution: Tectonic Setting and Secular Trends. J. Geol. 1991, 99, 1–21. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Wang, R.-C.; Xu, X.-S.; Zhao, K.-D. Mobility of high field strength elements (HFSE) in magmatic-, metamorphic-, and submarine-hydrothermal systems. Phys. Chem. Earth Parts A/B/C 2005, 30, 1020–1029. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The Continental Crust: Its Composition and Evolution, 1st ed.; Blackwell: Oxford, UK, 1985. [Google Scholar]
- Cullers, R. Mineralogical and chemical changes of soil and stream sediment formed by intense weathering of the Danburg granite, Georgia, U.S.A. Lithos 1988, 21, 301–314. [Google Scholar] [CrossRef]
- Garrels, R.M.; Mackenzie, F.T. Evolution of Sedimentary Rocks; Norton: Tempe, AZ, USA, 1971. [Google Scholar]
- Nesbitt, H.; Markovics, G.; Price, R. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochim. Cosmochim. Acta 1980, 44, 1659–1666. [Google Scholar] [CrossRef]
- Wronkiewicz, D.J.; Condie, K.C. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochim. Cosmochim. Acta 1987, 51, 2401–2416. [Google Scholar] [CrossRef]
- Puchelt, H. Barium: Behavior during processes connected with magmatism. In Handbook of Geochemistry; Springer: Berlin/Heidelberg, Germany, 1972. [Google Scholar]
- Patterson, S.H.; Murray, H.H. Kaolin, refractory clay, ball clay, and halloysite in North America, Hawaii, and the Caribbean region. Prof. Pap. 1984, 1306. [Google Scholar] [CrossRef]
- Middelburg, J.J.; van der Weijden, C.H.; Woittiez, J.R. Chemical processes affecting the mobility of major, minor and trace elements during weathering of granitic rocks. Chem. Geol. 1988, 68, 253–273. [Google Scholar] [CrossRef]
- Prudêncio, M.I.; Gouveia, M.A.; Braga, M.A.S. REE distribution in presentday and ancient surface environments of basaltic rocks (Central Portugal). Clay Miner. 1995, 30, 239–248. [Google Scholar] [CrossRef]
- Santos, I.R.; Fávaro, D.I.; Schaefer, C.E.; Silva-Filho, E.V. Sediment geochemistry in coastal maritime Antarctica (Admiralty Bay, King George Island): Evidence from rare earths and other elements. Mar. Chem. 2007, 107, 464–474. [Google Scholar] [CrossRef]
- Lackschewitz, K.S.; Singer, A.; Botz, R.; Garbe-Schonberg, D.; Stoffers, P.; Horz, K. Formation and Transformation of Clay Minerals in the Hydrothermal Deposits of Middle Valley, Juan de Fuca Ridge, ODP Leg 169. Econ. Geol. 2000, 95, 361–389. [Google Scholar] [CrossRef]
- Galán, E.; Aparicio, P.; Fernández-Caliani, J.C.; Miras, A.; Márquez, M.G.; Fallick, A.E.; Clauer, N. New insights on mineralogy and genesis of kaolin deposits: The Burela kaolin deposit (Northwestern Spain). Appl. Clay Sci. 2016, 131, 14–26. [Google Scholar] [CrossRef]
- Hong, H.; Fang, Q.; Cheng, L.; Wang, C.; Churchman, G.J. Microorganism-induced weathering of clay minerals in a hydromorphic soil. Geochim. Cosmochim. Acta 2016, 184, 272–288. [Google Scholar] [CrossRef]
- Baioumy, H.M.; Ismael, I.S. Composition, origin and industrial suitability of the Aswan ball clays, Egypt. Appl. Clay Sci. 2014, 102, 202–212. [Google Scholar] [CrossRef]
- Gilg, H.A.; Hülmeyer, S.; Miller, H.; Sheppard, S.M.F. Supergene Origin of the Lastarria Kaolin Deposit, South-Central Chile, and Paleoclimatic Implications. Clays Clay Miner. 1999, 47, 201–211. [Google Scholar] [CrossRef]
- Murray, H.H. World kaolins—diverse quality needs permit different resource types. In Proceedings of the US Minerals International. Congress, Las Vegas, NV, USA; 1988; pp. 127–130. [Google Scholar]
- Murray, H.H.; Keller, W.D. Kaolins, Kaolins, and Kaolins. In Kaolin Genesis and Utilization; Murray, H.H., Bundy, W.M., Harvey, C.C., Eds.; Clay Minerals Society: Chantilly, VA, USA, 1993; Volume 1. [Google Scholar]
- Arribas, A.; Hedenquist, J.; Itaya, T.; Okada, T.; Concepción, R.; Garcia, J.S., Jr. Contemporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology 1995, 23, 337–340. [Google Scholar] [CrossRef]
- Deon, F.; van Ruitenbeek, F.; van der Werff, H.; van der Meijde, M.; Marcatelli, C. Detection of Interlayered Illite/Smectite Clay Minerals with XRD, SEM Analyses and Reflectance Spectroscopy. Sensors 2022, 22, 3602. [Google Scholar] [CrossRef]
- Ece, I.; Ercan, H. Global Occurrence, Geology and Characteristics of Hydrothermal-Origin Kaolin Deposits. Minerals 2024, 14, 353. [Google Scholar] [CrossRef]
- Papoulis, D. Supergene jarosite formation within smectite and illite hydrothermal zones from Limnos Island, Northeast Aegean sea, Greece. Int. Multidiscip. Sci. GeoConference SGEM 2008, 1, 299–306. [Google Scholar]
- Giese, R.F.J. Chapter 3. Kaolin Minerals: Structures and Stabilities. In Hydrous Phyllosilicates; De Gruyter: Berlin, Germany, 1988; pp. 29–66. ISBN 978-1-5015-0899-8. [Google Scholar]
- Galán, E.; Ferrell, R. Genesis of Clay Minerals. Dev. Clay Sci. 2013, 5, 83–126. [Google Scholar] [CrossRef]
- Awad, M.E.; López-Galindo, A.; Sánchez-Espejo, R.; Sainz-Díaz, C.I.; El-Rahmany, M.M.; Viseras, C. Crystallite size as a function of kaolinite structural order-disorder and kaolin chemical variability: Sedimentological implication. Appl. Clay Sci. 2018, 162, 261–267. [Google Scholar] [CrossRef]
- Kulkarni, M.M.; Jadhav, G.N. Reduction of titaniferrous impurities from kaolin by selective adsorption of flocculating agents. Int. J. Sci. Eng. Res. 2016, 7, 2229–5518. [Google Scholar]
- Prasad, M.; Reid, K.; Murray, H. Kaolin: Processing, properties and applications. Appl. Clay Sci. 1991, 6, 87–119. [Google Scholar] [CrossRef]
- Detlef, G. 2. Mineralogie. In Füllstoffe; Vincentz Network: Hannover, Germany, 2019; pp. 17–40. [Google Scholar] [CrossRef]
- Konta, J. Clay and man: Clay raw materials in the service of man. Appl. Clay Sci. 1995, 10, 275–335. [Google Scholar] [CrossRef]
- Murray, H.H. Overview—clay mineral applications. Appl. Clay Sci. 1991, 5, 379–395. [Google Scholar] [CrossRef]
- Zunino, F.; Boehm-Courjault, E.; Scrivener, K. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Mater. Struct. 2020, 53, 44. [Google Scholar] [CrossRef]
Sample | AS1 | AS8 | AS9 | AS14 | AS16 | AS20 |
---|---|---|---|---|---|---|
Color | Grayish Yellow | Light Grey | Dark Grey | Grey White | Light Pink | Yellow |
kaolinite | 20 | 79 | 77 | 94 | 98 | 84 |
illite | 65 | / | / | / | / | / |
smectite | 9 | 5 | 12 | / | / | / |
quartz | 6 | 16 | 8 | 6 | 2 | 7 |
orthoclase | / | / | 3 | / | / | / |
ettringite | / | / | / | / | / | 5 |
hematite | / | / | / | / | / | 4 |
HI | 1.0 | 0.80 | 0.65 | 0.73 | 0.53 | 1.1 |
Samples | Rock Type | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | SUM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AS1 | RBG | 52.62 | 0.95 | 23.19 | 7.54 | 0.07 | 2.55 | 0.34 | 0.42 | 4.34 | 0.18 | 7.02 | 99.22 |
AS8 | BGM | 53.77 | 2.01 | 29.83 | 1.69 | 0.01 | 0.09 | 0.15 | 0.01 | 0.10 | 0.05 | 11.80 | 99.51 |
AS9 | CAB | 44.25 | 2.75 | 32.46 | 2.97 | 0.02 | 0.14 | 0.19 | 0.03 | 0.13 | 0.07 | 16.73 | 99.73 |
AS14 | BGM | 47.26 | 1.14 | 35.86 | 1.73 | 0.01 | 0.03 | 0.07 | 0.01 | 0.08 | 0.05 | 13.22 | 99.47 |
AS16 | B | 47.63 | 1.73 | 35.87 | 1.23 | 0.01 | 0.02 | 0.06 | 0.00 | 0.03 | 0.06 | 13.11 | 99.75 |
AS20 | CAB | 51.88 | 0.64 | 30.95 | 4.04 | 0.02 | 0.08 | 0.09 | 0.02 | 0.26 | 0.13 | 11.58 | 99.68 |
AY3 | RBG | 76.02 | 0.04 | 12.98 | 1.18 | 0.02 | 0.05 | 0.33 | 4.28 | 4.45 | 0.01 | 0.46 | 99.81 |
AY4 | RBG | 69.05 | 0.57 | 14.92 | 3.61 | 0.06 | 0.82 | 2.23 | 4.31 | 3.64 | 0.15 | 0.55 | 99.91 |
AY6 | ABG | 77.80 | 0.12 | 11.91 | 1.03 | 0.00 | 0.05 | 0.07 | 3.68 | 4.86 | 0.00 | 0.41 | 99.93 |
AY8 | BGM | 67.82 | 0.28 | 16.23 | 2.53 | 0.05 | 0.81 | 1.76 | 3.50 | 5.80 | 0.37 | 0.78 | 99.93 |
AY10 | BGU | 75.53 | 0.06 | 12.91 | 1.17 | 0.02 | 0.04 | 0.48 | 4.00 | 4.78 | 0.00 | 0.38 | 99.38 |
AY14 | CAB | 55.71 | 0.92 | 15.94 | 8.50 | 0.15 | 4.79 | 6.87 | 3.43 | 2.15 | 0.28 | 0.61 | 99.36 |
Samples | Rock Type | SiO2/Al2O3 | CIW | CIA | ICV |
---|---|---|---|---|---|
AS1 | RBG | 2.27 | 96.82 | 81.96 | 0.70 |
AS8 | BGM | 1.80 | 99.46 | 99.14 | 0.14 |
AS9 | CAB | 1.36 | 99.34 | 98.95 | 0.19 |
AS14 | BGM | 1.32 | 99.77 | 99.56 | 0.09 |
AS16 | BST | 1.33 | 99.83 | 99.73 | 0.09 |
AS20 | CAB | 1.68 | 99.66 | 98.82 | 0.17 |
Samples | SiO2 | TiO2 | Al2O3 | Fe2O3 | MgO | CaO | Na2O | K2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Ropp | 49.57 | 1.54 | 31.36 | 3.20 | 0.49 | 0.15 | 0.08 | 0.82 | 12.24 |
ECC | 47.00 | 0.03 | 38.00 | 0.39 | 0.10 | 0.03 | 0.15 | 0.80 | 13.00 |
SKD | 50.00 | 1.00 | 32.90 | 1.20 | 0.30 | 0.20 | 0.20 | 1.60 | 12.60 |
Pharmaceuticals | 48.00 | 0.02 | 36.00 | 0.10 | 0.20 | 0.01 | 0.10 | 1.10 | 11.90 |
Ceramics | 48.00 | 0.30 | 37.00 | 0.60 | 0.30 | 0.10 | 0.10 | 1.60 | 12.40 |
Filling agent | 48.70 | 0.05 | 36.00 | 0.82 | 0.25 | 0.60 | 0.10 | 2.10 | 11.90 |
Fertilizer | 46.07 | 0.50 | 38.07 | 0.33 | 0.01 | 0.38 | 0.27 | 0.43 | 13.47 |
Porcelain | 48.00 | 0.03 | 37.00 | 0.60 | 0.30 | 0.10 | 0.10 | 1.60 | 12.40 |
Refractory bricks | 51–70 | 1.00–2.80 | 25–44 | 0.50–2.40 | 0.20–0.70 | 0.10–0.20 | 0.80–3.50 | - | - |
Samples | AS1 | AS8 | AS9 | AS14 | AS16 | AS20 | AY3 | AY4 | AY6 | AY8 | AY10 | AY14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock Type | RBG | BGM | CAB | BGM | BST | CAB | RBG | RBG | ABG | BGM | BGU | CAB |
Sr | 122 | 62.8 | 68.1 | 40.2 | 48.7 | 79.6 | 3.6 | 204 | 2.5 | 245 | 6.3 | 513 |
Zr | 284 | 666 | 463 | 872 | 784 | 579 | 127 | 368 | 507 | 99.5 | 154 | 60.3 |
Nb | 18.6 | 245 | 80.2 | 239 | 74.8 | 32.9 | 140 | 21.8 | 134 | 8.9 | 187 | 11.5 |
Sn | 177 | 43.9 | 10.5 | 46.0 | 65.5 | 26.1 | 8.4 | 21.2 | 10.9 | 4.7 | 12.2 | 3.6 |
Cs | 27.5 | 2.1 | 1.7 | 1.6 | 0.07 | 0.9 | 6.2 | 7.7 | 2.5 | 14.6 | 8.8 | 14.2 |
Ba | 911 | 109 | 109 | 34.6 | 82.4 | 109 | 7.4 | 437 | 14.1 | 1646 | 20.9 | 386 |
Hf | 7.5 | 25.3 | 12.0 | 57.8 | 23.3 | 16.8 | 11.4 | 10.3 | 18.5 | 2.8 | 9.0 | 2.0 |
Ta | 1.0 | 40.0 | 4.9 | 32.9 | 6.0 | 6.3 | 37.4 | 1.8 | 10.1 | 1.1 | 24.8 | 0.8 |
Tl | 5.0 | 0.3 | 0.8 | 0.2 | 0.0 | 0.2 | 2.9 | 1.7 | 1.1 | 1.0 | 2.3 | 0.7 |
Pb | 48.9 | 96.1 | 30.2 | 70.8 | 60.6 | 88.6 | 33.6 | 39.6 | 20.2 | 45.8 | 30.3 | 19.3 |
Th | 9.3 | 46.2 | 24.6 | 62.8 | 34.3 | 24.9 | 48.5 | 55.5 | 26.6 | 1.8 | 44.0 | 4.7 |
U | 3.2 | 14.5 | 4.9 | 13.6 | 3.6 | 4.6 | 5.7 | 7.0 | 5.9 | 1.6 | 12.7 | 2.2 |
Sc | 17.1 | 11.4 | 29.2 | 8.8 | 14.9 | 9.4 | 1.1 | 5.0 | 0.5 | 5.1 | 1.2 | 24.0 |
Co | 15.1 | 2.2 | 7.3 | 1.6 | 2.1 | 7.7 | 0.1 | 6.7 | 0.4 | 5.3 | 0.2 | 26.1 |
Li | 239 | 27.0 | 75.7 | 17.4 | 14.1 | 17.6 | 371 | 20.8 | 33.7 | 36.8 | 169 | 68.1 |
Be | 130 | 10.3 | 4.5 | 3.1 | 1.7 | 5.2 | 8.3 | 16.6 | 5.5 | 5.6 | 9.5 | 3.6 |
V | 96.5 | 63.2 | 208 | 41.0 | 63.4 | 84.5 | 1.1 | 34.1 | 1.1 | 36.6 | 1.0 | 194 |
Cr | 60.1 | 63.0 | 223 | 65.8 | 70.4 | 75.0 | 0.7 | 9.8 | 1.1 | 6.2 | 0.8 | 87.7 |
Ni | 17.0 | 18.3 | 47.5 | 19.7 | 28.8 | 19.3 | 0.3 | 5.4 | 0.4 | 4.9 | 0.2 | 33.3 |
Cu | 124 | 43.4 | 83.8 | 21.9 | 15.0 | 25.3 | 0.6 | 11.9 | 2.2 | 3.2 | 1.0 | 23.4 |
Zn | 1540 | 115 | 97.3 | 108 | 59.1 | 58.2 | 81.6 | 175 | 85.9 | 51.2 | 50.1 | 104 |
Ga | 36.4 | 87.7 | 54.7 | 122 | 54.8 | 50.4 | 63.8 | 30.5 | 48.5 | 20.7 | 47.7 | 21.9 |
Rb | 674 | 11.9 | 8.9 | 27.8 | 0.9 | 23.6 | 804 | 200 | 269 | 183 | 557 | 127 |
Samples | AS1 | AS8 | AS9 | AS14 | AS16 | AS20 | AY3 | AY4 | AY6 | AY8 | AY10 | AY14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Rock type | RBG | BGM | CAB | BGM | BST | CAB | RBG | RBG | ABG | BGM | BGU | CAB |
La | 44.6 | 68.2 | 67.1 | 141 | 62.7 | 93.4 | 41.4 | 85.9 | 122 | 9.9 | 80.0 | 19.2 |
Ce | 80 | 143 | 149 | 178 | 134 | 185 | 90.9 | 159 | 157 | 24.6 | 149 | 42.7 |
Pr | 10.2 | 14.7 | 16.4 | 26.8 | 14.5 | 22.5 | 11.8 | 17.2 | 33.0 | 3.2 | 20.4 | 5.5 |
Nd | 37.9 | 52.4 | 59.4 | 77.2 | 49.3 | 79.7 | 36.1 | 58.5 | 128 | 13.9 | 72.1 | 22.0 |
Sm | 8.5 | 9.7 | 10.9 | 11.1 | 8.1 | 12.0 | 9.6 | 9.4 | 29.4 | 4.3 | 17.9 | 4.9 |
Eu | 1.7 | 1.6 | 1.8 | 1.2 | 1.6 | 2.4 | 0.1 | 1.2 | 1.5 | 1.1 | 0.5 | 1.3 |
Gd | 7.8 | 10.4 | 8.8 | 8.7 | 6.6 | 7.5 | 8.8 | 6.7 | 27.0 | 4.4 | 17.8 | 4.4 |
Tb | 1.3 | 1.8 | 1.4 | 1.5 | 1.1 | 1.0 | 2.0 | 0.9 | 4.0 | 0.8 | 3.7 | 0.7 |
Dy | 6.6 | 11.7 | 7.8 | 9.5 | 6.3 | 4.7 | 13.7 | 4.8 | 23.0 | 5.4 | 25.4 | 4.1 |
Ho | 1.2 | 2.5 | 1.5 | 2.0 | 1.2 | 0.8 | 3.0 | 0.9 | 4.2 | 1.1 | 5.3 | 0.8 |
Er | 3.1 | 7.5 | 3.8 | 6.5 | 3.4 | 2.2 | 10.4 | 2.3 | 11.4 | 3.2 | 16.7 | 2.3 |
Tm | 0.4 | 1.2 | 0.6 | 1.2 | 0.5 | 0.3 | 2.0 | 0.3 | 1.6 | 0.5 | 2.8 | 0.3 |
Yb | 2.6 | 8.8 | 3.7 | 9.6 | 3.5 | 2.2 | 15.3 | 1.9 | 10.2 | 3.3 | 18.9 | 2.2 |
Lu | 0.4 | 1.3 | 0.5 | 1.4 | 0.5 | 0.4 | 2.2 | 0.3 | 1.4 | 0.5 | 2.6 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yunusa, A.; Hong, H.; Salim, A.; Amam, T.; Liu, C.; Xu, Y.; Zuo, X.; Li, Z. Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria. Minerals 2024, 14, 869. https://doi.org/10.3390/min14090869
Yunusa A, Hong H, Salim A, Amam T, Liu C, Xu Y, Zuo X, Li Z. Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria. Minerals. 2024; 14(9):869. https://doi.org/10.3390/min14090869
Chicago/Turabian StyleYunusa, Adamu, Hanlie Hong, Atif Salim, Tarig Amam, Chen Liu, Yanxiao Xu, Xiaochao Zuo, and Zhaohui Li. 2024. "Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria" Minerals 14, no. 9: 869. https://doi.org/10.3390/min14090869
APA StyleYunusa, A., Hong, H., Salim, A., Amam, T., Liu, C., Xu, Y., Zuo, X., & Li, Z. (2024). Mineralogical Characterization and Geochemical Signatures of Supergene Kaolinitic Clay Deposits: Insight of Ropp Complex Kaolins, Northcentral Nigeria. Minerals, 14(9), 869. https://doi.org/10.3390/min14090869