Bentonite Clays Related to Volcanosedimentary Formations in Southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. X-ray Diffraction (XRD)
3.2. X-ray Fluorescence (XRF)
3.3. Thermogravimetric Analysis (TGA)
3.4. Chemical-Technological Quality Test (CTQT)
3.5. Chemical Pozzolanicity Test (CPT)
4. Conclusions
- The samples have a complex mineralogy, being fundamentally composed of minerals of the smectite group (montmorillonite), quartz, cristobalite and calcite. To a lesser degree, there are traces of pyroxene, amphibole and zeolite of the chabazite–Ca type.
- From a chemical point of view, the bentonites have much more SiO2 and Al2O3 compared to their proximal and distal host rocks (HRS–01 and HRS–03), which may be related to their origin from the alteration of calc-alkaline volcanic rocks in the southeast of the Iberian Peninsula. It seems that these anomalous contents are specifically due to the alteration of the feldspars and the presence of quartz contained in the dacites and rhyolites.
- The bentonites have a marked pozzolanic reactivity, both at 8 and 15 days; therefore, they can be considered as natural pozzolanic materials, qualitatively suitable from a technical point of view.
- In terms of the production processes, the chemical and mineral composition of these bentonites could be beneficial to produce eco-efficient pozzolanic cements. This is confirmed by the high contents of reactive SiO2, reactive CaO and Al2O3, as well as by their low SO3 contents.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, H.H. Chapter 6 Bentonite Applications. In Developments in Clay Science; Elsevier: Amsterdam, The Netherlands, 2006; Volume 2, pp. 111–130. [Google Scholar] [CrossRef]
- Martin Vivaldi, J.L. The Bentonites of Cabo de Gata (Southeast Spain) and of Guelaya Volcanic Province (North Morocco). Springer. Clays Clay Miner. 1962, 11, 327–357. [Google Scholar] [CrossRef]
- Benito, R.; García-Guinea, J.; Valle-Fuentes, F.J.; Recio, P. Mineralogy, geochemistry and uses of the mordenite–bentonite ash-tuff beds of Los Escullos, Almería, Spain. J. Geochem. Explor. 1998, 62, 229–240. [Google Scholar] [CrossRef]
- Ramírez, S.; Cuevas, J.; Vigil, R.; Leguey, S. Hydrothermal alteration of “La Serrata” bentonite (Almeria, Spain) by alkaline solutions. Appl. Clay Sci. 2002, 21, 257–269. [Google Scholar] [CrossRef]
- Martínez, J.A.; Jiménez de Cisneros, C.; Caballero, E. Natural acid sulphate alteration in bentonites (Cabo de Gata, Almeria, SE Spain). Clay Miner. 2018, 42, 89–107. [Google Scholar] [CrossRef]
- González-Pradas, E.; Villafranca-Sánchez, E.; Villafranca-Sánchez, M.; del Rey-Bueno, F.; Valverde-García, A.; García-Rodríguez, A. Evolution of surface properties in a bentonite as a function of acid and heat treatments. J. Chem. Technol. Biotechnol. 1991, 52, 211–218. [Google Scholar] [CrossRef]
- Caballero, E.; Jiménez de Cisneros, C. Stable oxygen and hydrogen isotopic composition of bentonites from Cabo de Gata (Almería, Spain). Geochemistry 2010, 70, 69–76. [Google Scholar] [CrossRef]
- García-Siñeriz, J.L.; García-Siñeriz, M.V.; Rey, M.; Palacios, B. Engineered barrier of bentonite pellets and compacted blocks: State after reaching saturation. Eng. Geol. 2015, 192, 33–35. [Google Scholar] [CrossRef]
- Villar, M.V.; Iglesias, R.J.; Gutiérrez-Alvarez, C.; Carbonell, B. Pellets/block bentonite barriers: Laboratory study of their evolution upon hydration. Eng. Geol. 2021, 292, 06272. [Google Scholar] [CrossRef]
- Villar, M.V.; Iglesias, R.J.; Gutiérrez-Alvarez, C.; Carbonell, B. Hydraulic and mechanical properties of compacted bentonite after 18 years in barrier conditions. Appl. Clay Sci. 2018, 160, 49–57. [Google Scholar] [CrossRef]
- Ruiz-Fresneda, M.A.; Morales-Hidalgo, M.; Povedano-Priego, C.; Jroundi, F.; Hidalgo-Iruela, J.; Cano-Cano, M.; Pérez-Muelas, E.; Larbi Merroun, M.; Martín-Sanchez, I. Unlocking the key role of bentonite fungal isolates in tellurium and selenium bioremediation and biorecovery: Implications in the safety of radioactive waste disposal. Sci. Total Environ. 2024, 912, 169242. [Google Scholar] [CrossRef]
- Pelayo, M.; García-Romero, E.; Labajo, M.A.; Pérez del Villar, L. Evidence of montmorillonite/Fe-rich smectite transformation in the Morrón de Mateo bentonite deposit (Spain): Implications for the clayey barrier behaviour. Appl. Clay Sci. 2016, 131, 59–70. [Google Scholar] [CrossRef]
- Huertas, F.J.; Carretero, P.; Delgado, J.; Linares, J.; Samper, J. An Experimental Study on the Ion-Exchange Behavior of the Smectite of Cabo de Gata (Almería, Spain): FEBEX Bentonite. J. Colloid Interface Sci. 2001, 239, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Viseras, C.; Lopez-Galindo, A. Pharmaceutical applications of some spanish clays (sepiolite, palygorskite, bentonite): Some preformulation studies. Appl. Clay Sci. 1999, 14, 69–82. [Google Scholar] [CrossRef]
- Srasra, E.; Bekri-Abbes, I. Bentonite Clays for Therapeutic Purposes and Biomaterial Design. Curr. Pharm. Des. 2020, 26, 642–649. [Google Scholar] [CrossRef] [PubMed]
- Costafreda, J.L.; Martín, D.A. Bentonites in Southern Spain. Characterization and Applications. Crystals 2021, 11, 706. [Google Scholar] [CrossRef]
- Van Geet, M.; Volckaert, G.; Bastiaens, W.; Maes, N.; Weetjens, E.; Sillen, X.; Vallejan, B.; Gens, A. Efficiency of a borehole seal by means of pre-compacted bentonite blocks. Phys. Chem. Earth Parts A/B/C 2007, 32, 123–134. [Google Scholar] [CrossRef]
- Delaleux, F.; Py, X.; Olives, R.; Dominguez, A. Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl. Therm. Eng. 2012, 33–34, 92–99. [Google Scholar] [CrossRef]
- Pandey, S. A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. J. Mol. Liq. 2017, 241, 1091–1113. [Google Scholar] [CrossRef]
- Nadziakiewicza, M.; Kehoe, S.; Micek, P. Physico-Chemical Properties of Clay Minerals and Their Use as a Health Promoting Feed Additive. Animals 2019, 9, 714. [Google Scholar] [CrossRef]
- Matei, S.; Varga, B.; Bedo, T.; Pop, M.A.; Stoicanescu, M.; Crisan, A. Composites with clay and bentonite matrix: A study of the certain materials behavior for ceramic composites. Mater. Today Proceeding 2019, 19, 1041–1050. [Google Scholar] [CrossRef]
- Da Silva, J.; Dos Santos, V.; Weiss-Angeli, V.; Gomes, L.B.; Gusmão, V.; Dani, N.; Sampaio, A.; Pérez, C. Evaluation and characterization of Melo Bentonite clay for cosmetic applications. Appl. Clay Sci. 2019, 175, 40–46. [Google Scholar] [CrossRef]
- Stojiljković, S.T.; Stojiljković, M.S. Application of Bentonite Clay for Human Use. In Proceedings of the IV Advanced Ceramics and Applications Conference; Lee, B., Gadow, R., Mitic, V., Eds.; Atlantis Press: Paris, France, 2017; ISBN 978-94-6239-213-7_24. [Google Scholar] [CrossRef]
- Aïtcin, P.-C. 4—Supplementary cementitious materials and blended cements. In Science and Technology of Concrete Admixtures; Woodhead Publishing: Cambridge, UK, 2016; pp. 53–73. ISBN 9780081006931. [Google Scholar] [CrossRef]
- Elyasigorji, F.; Farajiani, F.; Hajipour Manjili, M.; Lin, Q.; Elyasigorji, S.; Farhangi, V.; Tabatabai, H. Comprehensive Review of Direct and Indirect Pozzolanic Reactivity Testing Methods. Buildings 2023, 13, 2789. [Google Scholar] [CrossRef]
- Massaza, F. Properties and applications of natural pozzolanas, Chapter. 13. In Structure and Performances of Cements; Bensted, J., Barnes, P., Eds.; Spon Press: London, UK, 2002. [Google Scholar]
- Rosell-Lam, M.; Villar-Cociña, E.; Frías, M. Study on the pozzolanic properties of a natural Cuban zeolitic rock by conduc-tometric method: Kinetic parameters. Constr. Build. Mater. 2011, 25, 644–650. [Google Scholar] [CrossRef]
- Martín, D.A.; Costafreda, J.L.; Presa, L.; Crespo, E.; Parra, J.L.; Astudillo, B.; Sanjuán, M.Á. Ignimbrites Related to Neogene Volcanism in the Southeast of the Iberian Peninsula: An Experimental Study to Establish Their Pozzolanic Character. Materials 2023, 16, 1546. [Google Scholar] [CrossRef] [PubMed]
- Martín, D.A.; Costafreda, J.L.; Sanjuán, M.A.; Costafreda-Velázquez, J.L. Mineral, Chemical and Technical Characterization of Altered Pyroxenic Andesites from Southeastern Spain for Use as Eco-Efficient Natural Materials. Appl. Sci. 2023, 13, 12866. [Google Scholar] [CrossRef]
- Costafreda, J.L.; Martín, D.A.; Astudillo, B.; Presa, L.; Parra, J.L.; Sanjuán, M.A. Diatomites from the Iberian Peninsula as Pozzolans. Materials 2023, 16, 3883. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Duitama, J.A.; Rojas-Avellaneda, D. Pozzolans: A review. Eng. Appl. Sci. Res. 2022, 49, 495–504. Available online: https://ph01.tci-thaijo.org/index.php/easr/article/view/247697 (accessed on 1 March 2024).
- Di Prima, G.; Belfiore, E.; Migliore, M.; Scarpaci, A.G.; Angellotti, G.; Restivo, I.; Allegra, M.; Arizza, V.; De Caro, V. Green Extraction of Polyphenols from Waste Bentonite to Produce Functional Antioxidant Excipients for Cosmetic and Pharmaceutical Purposes: A Waste-to-Market Approach. Antioxidants 2022, 11, 2493. [Google Scholar] [CrossRef] [PubMed]
- Google Earth. Available online: https://earth.google.com/web/@40.11541525,-4.05033575,1390.22251164a,4836927.60623217d,35y,359.99765046h,0t,0r/data=OgMKATA (accessed on 11 March 2023).
- Standard UNE-EN 196-2:2014; Métodos de Ensayo de Cementos. Parte 2: Análisis Químico de Cementos. AENOR: Madrid, Spain, 2014.
- Standard UNE-EN 196-5:2006; Métodos de Ensayo de Cementos. Parte 5: Ensayo de Puzolanicidad Para Cementos Puzolánicos. AENOR: Madrid, Spain, 2006.
- Moore, D.M.; Reynolds, R.C., Jr. X-ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed.; Oxford University Press: Oxford, NY, USA, 1997; pp. xviii + 378; ISBN 0-19-508713-5. [Google Scholar]
- Costafreda, J.L. Geología, Caracterización y Aplicaciones de las Rocas Zeolíticas del Complejo Volcánico de Cabo de Gata (Almería). Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2008; p. 515. [Google Scholar]
- Costafreda, J.L.; Martín, D.A.; Sanjuán, M.Á.; Costafreda-Velázquez, J.L. Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes. Sustainability 2023, 15, 16710. [Google Scholar] [CrossRef]
- Whitney, D.L.; Evans, B.W. Abbreviations for names of rock-forming minerals. Am. Mineral. 2010, 95, 185–187. [Google Scholar] [CrossRef]
- Crystallography Open Database. Available online: https://www.crystallography.net/cod/index.php (accessed on 14 April 2024).
- García-Romero, E.; María Manchado, E.; Suárez, M.; García-Rivas, J. Spanish Bentonites: A Review and New Data on Their Geology, Mineralogy, and Crystal Chemistry. Minerals 2019, 9, 696. [Google Scholar] [CrossRef]
- Reyes, E.; Huertas, F.; Linares, J. Mineralogía y geoquímica de las bentonitas de la zona norte de Cabo de Gata (Almería). V. Área de Los Trancos. Estud. Geológicos 1979, 35, 363–370. [Google Scholar]
- Carretero, M.F.; Pozo, M. Mineralogía Aplicada. Salud y medio Ambiente; Thomson, Ed.; Paraninfo, SA: Madrid, Spain, 2007; p. 424. ISBN 978-8497324878. [Google Scholar]
- Montes-Hernandez, G.; Fernández-Martínez, A.; Charlet, L.; Tisserand, D.; Renard, F. Textural properties of synthetic nano-calcite produced by hydrothermal carbonation of calcium hydroxide. J. Cryst. Growth 2008, 310, 2946–2953. [Google Scholar] [CrossRef]
- Sögaard, C.; Funehag, J.; Gergorić, M.; Abbas, Z. The long term stability of silica nanoparticle gels in waters of different ionic compositions and pH values. Colloids Surf. A Physicochem. Eng. Asp. 2018, 544, 127–136. [Google Scholar] [CrossRef]
- Mackenzie, R.C. Simple phyllosilicates based on gibbsite-and brucite-like sheets. In Differential Thermal Analysis; Mackenzie, R.C., Ed.; Academic Press: London, UK, 1970; pp. 497–537. [Google Scholar]
- Ramachandran, V.S.; Paroli, R.M.; Beaudoin, J.J.; Delgado, A.H. Clay-Based Construction Products. In Handbook of Thermal Analysis of Construction Materials; Wiliam Andrew Publishing: Norwich, NY, USA, 2002; pp. 491–530. [Google Scholar]
- Inglezakis, V.J.; Stylianou, M.; Loizidou, M. Ion exchange and adsorption equilibrium studies on clinoptilolite, bentonite and vermiculite. J. Phys. Chem. Solids 2010, 71, 279–284. [Google Scholar] [CrossRef]
- Rabilero, A. Las Puzolanas. Cinética de Reacciones; Editorial Oriente: Santiago de Cuba, Cuba, 1988; 114p. [Google Scholar]
- Martín, D.A.; Costafreda, J.L.; Estévez, E.; Presa, L.; Calvo, A.; Castedo, R.; Sanjuán, M.Á.; Parra, J.L.; Navarro, R. Natural Fluorite from Órgiva Deposit (Spain). A Study of Its Pozzolanic and Mechanical Properties. Crystals 2021, 11, 1367. [Google Scholar] [CrossRef]
Sample | Type of Lithology | Position in the Outcrop |
---|---|---|
BS–01 | Bentonite clay | Central part of the deposit |
BS–02 | ||
BS–03 | ||
HRS–01 | Calcarenite | Proximal host rock |
HRS–02 | Dacite altered | Proximal host rock |
HRS–03 | Calcarenite | Distal host rock |
Samples | % Mineral Content 1 | |||||||
---|---|---|---|---|---|---|---|---|
Cal | Dol | Crs | Qz | Plg | Sme | Zeo | Amp/Px | |
HRS–01 | 56 | 36 | - | 5 | 1 | 1 | - | - |
HRS–02 | - | - | 11 | 51 | 32 | 6 | - | t |
HRS–03 | 55 | 36 | - | 6 | 1 | 1 | - | - |
BS–01 | - | - | - | 9 | 21 | 70 | - | - |
BS–02 | 25 | - | - | - | - | 73 | 2 | - |
BS–03 | 22 | - | - | - | - | 78 | - | - |
Sample | OA–WT 1 (Å) | OA–EG 2 (Å) | OA–TT 3 (Å) | Mineral Found |
---|---|---|---|---|
BS–01 | 15.11 | 17.3 | 9.91 | Smectite |
BS–02 | 14.79 | 17.41 | 10.08 | Smectite |
BS–03 | 14.82 | 17.43 | 9.98 | Smectite |
Samples | % Oxides Weight | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SiO2 | Al2O3 | CaO | Na20 | K2O | MgO | Fe2O3 | TiO2 | MnO | SO3 | LOI | Si/Al | Si/ (Al + Fe) | |
BS–01 1 | 64.71 | 17.49 | 2.87 | 1.77 | 2.44 | 5.87 | 3.49 | 0.24 | 0.25 | 0.08 | 9.8 | 3.69 | 3.08 |
BS–02 | 43.33 | 15.81 | 30.41 | 0.54 | 0.17 | 6.01 | 2.97 | 0.23 | 0.13 | 0.03 | 23.4 | 2.74 | 2.38 |
BS–03 | 45.27 | 16.69 | 27.63 | 0.56 | 0.16 | 6.05 | 2.95 | 0.22 | 0.15 | 0.03 | 23.0 | 2.71 | 2.30 |
HRS–01 2 | 6.27 | 1.57 | 77.81 | 0.3 | 0.38 | 12.03 | 1.02 | 0.13 | 0.03 | 0.20 | 41.1 | 3.99 | 2.42 |
HRS–02 | 58.05 | 15.99 | 6.74 | 2.14 | 2.24 | 5.01 | 8.42 | 0.75 | 0.13 | 0.09 | 9.1 | 3.63 | 2.37 |
HRS–03 | 6.80 | 1.60 | 25.9 | 0.53 | 0.36 | 17.83 | 0.70 | 0.12 | 0.03 | 0.96 | 44.1 | 4.25 | 2.95 |
% Weight | Samples | Allowed Levels (%) | ||
---|---|---|---|---|
BS–01 | BS–02 | BS–03 | ||
Total SiO2 | 63.61 | 34.78 | 33.60 | - |
MgO | 2.78 | 3.26 | 3.35 | <5 |
Total CaO | 2.25 | 23.55 | 21.39 | - |
Fe2O3 | 2.21 | 1.50 | 1.47 | - |
Al2O3 | 15.13 | 11.82 | 11.16 | <16 |
Reactive SiO2 | 54.42 | 31.08 | 27.91 | >25 |
Reactive CaO | 0.12 | 6.59 | 4.92 | - |
Insoluble Residue | 14.53 | 7.84 | 8.52 | <3 |
SiO2/(CaO + MgO) | 12.6 | 1.3 | 1.4 | >3.5 |
SiO2 + Al2O3 + Fe2O3 | 80.95 | 48.1 | 46.23 | >70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crespo, E.; Martín, D.A.; Costafreda, J.L. Bentonite Clays Related to Volcanosedimentary Formations in Southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics. Minerals 2024, 14, 814. https://doi.org/10.3390/min14080814
Crespo E, Martín DA, Costafreda JL. Bentonite Clays Related to Volcanosedimentary Formations in Southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics. Minerals. 2024; 14(8):814. https://doi.org/10.3390/min14080814
Chicago/Turabian StyleCrespo, Elena, Domingo A. Martín, and Jorge L. Costafreda. 2024. "Bentonite Clays Related to Volcanosedimentary Formations in Southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics" Minerals 14, no. 8: 814. https://doi.org/10.3390/min14080814
APA StyleCrespo, E., Martín, D. A., & Costafreda, J. L. (2024). Bentonite Clays Related to Volcanosedimentary Formations in Southeastern Spain: Mineralogical, Chemical and Pozzolanic Characteristics. Minerals, 14(8), 814. https://doi.org/10.3390/min14080814