Characterization of Limestone Surface Impurities and Resulting Quicklime Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Quicklime Samples
2.2. Analytical Methods
2.3. Multicomponent Chemical Equilibrium Calculations
3. Results and Discussion
3.1. Elemental Composition of Raw Materials
3.2. Morphology, Elemental Distribution, and Phase Composition of Raw Materials
3.3. Morphology, Elemental Distribution, and Phase Composition of Quicklimes
3.3.1. LPQ
3.3.2. IPQ
3.4. Overall Quality Assessment
4. Conclusions
- For the tested limestone, an accumulation of impurities was found in the surface layer. The washing residue comprised 1.2 wt.-% of the total material but contained 4% of the total impurities in limestone kiln feed;
- Elevated levels of reaction products were found on the surface of the quicklime and consisted primarily of the same elements found on the limestone surface. The XRD analysis identified Larnite, Gehlenite, Åkermanite, and Merwinite in laboratory produced quicklime, resulting in lower free CaO on the surface;
- The amount of surface impurities was lower in the industrially produced quicklime. This indicated that the limestone surface impurities were, at least to some extent, removed while the material moved through the kiln;
- The multicomponent chemical equilibrium calculations showed that the quarry clay was expected to be fully melted at 1170 °C, possibly contributing to operational problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ICSD Code | Structure File Reference from ICSD | |
---|---|---|
Lime | 52783 | [32] |
Portlandite | 202223 | [33] |
Periclase | 61325 | [34] |
Larnite | 280995 | [35] |
α-Quartz | 201354 | [36] |
Gehlenite | 31235 | [37] |
Åkermanite | 94142 | [38] |
Merwinite | 26002 | [39] |
Microcline | 34788 | [40] |
Albite | 201649 | [41] |
Calcite | 20179 | [42] |
Dolomite | 31332 | [43] |
Muscovite | 74608 | [44] |
Chlorite | 156707 | [45] |
Illite | 90144 | [46] |
Ankerite | 152200 | [47] |
Pyrite | 53529 | [48] |
Rutile | 31329 | [49] |
References
- Schorcht, F.; Kourti, I.; Scalet, B.M.; Roudier, S.; Sancho, L.D. Best Available Techniques (BAT) Reference Document for the Production of Cement, Lime and Magnesium Oxide; European Commission, Joint Research Centre, Institute for Prospective Technological Studies: Brussels, Belgium, 2013; ISBN 978-92-79-32944-9. [Google Scholar]
- Krause, B.; Liedmann, B.; Wiese, J.; Bucher, P.; Wirtz, S.; Piringer, H.; Scherer, V. 3D-DEM-CFD simulation of heat and mass transfer, gas combustion and calcination in an intermittent operating lime shaft kiln. Int. J. Therm. Sci. 2017, 117, 121–135. [Google Scholar] [CrossRef]
- Piringer, H. Lime Shaft Kilns. Energy Procedia 2017, 120, 75–95. [Google Scholar] [CrossRef]
- Cwik, K.; Broström, M.; Backlund, K.; Fjäder, K.; Hiljanen, E.; Eriksson, M. Thermal Decrepitation and Thermally-Induced Cracking of Limestone Used in Quicklime Production. Minerals 2022, 12, 1197. [Google Scholar] [CrossRef]
- Vola, G.; Ardit, M.; Sarandrea, L.; Brignoli, G.; Natali, C.; Cavallo, A.; Bianchini, G.; Cruciani, G. Investigation and prediction of sticking tendency, blocks formation and occasional melting of lime at HT (1300 °C) by the overburning test method. Constr. Build. Mater. 2021, 294, 123577. [Google Scholar] [CrossRef]
- Sandström, K. Effects of Impurities on Phase Equilibrium in Quicklime and Cement Clinker Production. PhD Thesis, comprehensive summary, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden, 2024. [Google Scholar]
- Van Ranst, E.; Mees, F.; Bock, L.; Langohr, R. Development of a clay-rich interval above a limestone substrate in the Condroz region of southern Belgium. Catena 2014, 121, 204–213. [Google Scholar] [CrossRef]
- Boynton, R.S. Chemistry and Technology of Lime and Limestone, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Oates, J.A.H. Lime and Limestone: Chemistry and Technology, Production and Uses; Wiley-VCH: Weinheim, Germany, 1998. [Google Scholar]
- Eriksson, M.; Hökfors, B.; Backman, R. The effects of oxygen enrichment and fuel composition on Rotary Kiln Lime production. J. Eng. Technol. 2015, 32, 30–43. [Google Scholar]
- Searle, A. Limestone & Its Products: Their Nature, Production, and Uses; Ernest Benn Limited: London, UK, 1935. [Google Scholar]
- Harrison, D.J.; Adlam, K.A.M. Limestones of the Peak: A Guide to the Limestone and Dolomite Resources of the Peak District of Derbyshire and Staffordshire; British Geological Survey—Natural Environment Research Council: London, UK, 1985; ISBN 011884444X. [Google Scholar]
- Cox, F.C.; Bridge, D.M.; Hull, J.H. Procedure for the Assessment of Limestone Resources; Institute of Geological Sciences: London, UK, 1977; ISBN 9780118840309. [Google Scholar]
- Mitchell, C. High Purity Limestone Quest; British Geological Survey: London, UK, 2011; pp. 48–51. [Google Scholar]
- Eriksson, M.; Sandström, K.; Carlborg, M.; Broström, M. Impact of Limestone Surface Impurities on Quicklime Product Quality. Minerals 2024, 14, 244. [Google Scholar] [CrossRef]
- Vola, G.; Ardit, M.; Frijia, G.; Di Benedetto, F.; Fornasier, F.; Lugli, F.; Natali, C.; Sarandrea, L.; Schmitt, K.E.; Cipriani, A. Characterization and Provenance of Carbonate Rocks for Quicklime and Dololime Production in Twin-Shaft Regenerative Kilns from the Arabian Peninsula and Neighboring Countries. Minerals 2023, 13, 500. [Google Scholar] [CrossRef]
- Beruto, D.T.; Botter, R.; Cabella, R.; Lagazzo, A. A consecutive decomposition–sintering dilatometer method to study the effect of limestone impurities on lime microstructure and its water reactivity. J. Eur. Ceram. Soc. 2010, 30, 1277–1286. [Google Scholar] [CrossRef]
- Wang, L.; Xue, Z.; Cai, J.; Hu, B. Relationship Between Microstructure and Properties of Limestone Calcined Rapidly at High Temperatures. Trans. Indian Inst. Met. 2019, 72, 3215–3222. [Google Scholar] [CrossRef]
- Gates-Rector, S.; Blanton, T. The Powder Diffraction File: A quality materials characterization database. Powder Diffr. 2019, 34, 352–360. [Google Scholar] [CrossRef]
- Bale, C.W.; Belisle, E.; Chartrand, P.; Decterov, S.A.; Eriksson, G.; Gheribi, A.E.; Hack, K.; Jung, I.H.; Kang, Y.B.; Melancon, J.; et al. FactSage thermochemical software and databases, 2010-2016. Calphad-Comput. Coupling Ph. Diagr. Thermochem. 2016, 54, 35–53. [Google Scholar] [CrossRef]
- Lindberg, D.; Backman, R.; Chartrand, P.; Hupa, M. Towards a comprehensive thermodynamic database for ash-forming elements in biomass and waste combustion—Current situation and future developments. Fuel Process. Technol. 2013, 105, 129–141. [Google Scholar] [CrossRef]
- Viggh, E. Modeling the Influence of Magnesium from Alternative Raw Materials on the Chemistry of Portland Cement Clinker. Ph.D. Thesis, Department of Applied Physics and Electronics, Umeå University, Umeå, Sweden, 2023. [Google Scholar]
- EN 459-2:2010; Building Lime—Part 2: Test Methods. European Committee for Standardization: Brussels, Belgium, 2010; Volume 64.
- ASTM C25-19; Standard Test Methods for Chemical Analysis of Limestone, Quicklime, and Hydrated Lime. ASTM International: Philadelphia, PA, USA, 2019; Volume 40.
- Irassar, E.F.; Bonavetti, V.L.; Castellano, C.C.; Trezza, M.A.; Rahhal, V.F.; Cordoba, G.; Lemma, R. Calcined illite-chlorite shale as supplementary cementing material: Thermal treatment, grinding, color and pozzolanic activity. Appl. Clay Sci. 2019, 179, 105143. [Google Scholar] [CrossRef]
- Aboufadil, Y.; Hajjaji, M.; Raghni, A.E.I.; Thalal, A. Heating Transformations, Technical Properties and Ceramic Suitability of Clays. Trans. Indian Ceram. Soc. 2013, 72, 201–205. [Google Scholar] [CrossRef]
- Khalfaoui, A.; Hajjaji, M. A Chloritic-illitic clay from Morocco: Temperature–time–transformation and neoformation. Appl. Clay Sci. 2009, 45, 83–89. [Google Scholar] [CrossRef]
- Lecomte, G.; Pateyron, B.; Blanchart, P. Experimental study and simulation of a vertical section mullite-ternary eutectic (985 °C) in the SiO2-Al2O3-K2O system. Mater. Res. Bull. 2004, 39, 1469–1478. [Google Scholar] [CrossRef]
- Vola, G. High-Grade Burnt Lime Products: Impact of Calcination Kinetics on Slaking Reactivity, Sticking Tendency and Blocks Formation at HT (1300 °C); University of Ferrara: Ferrara, Italy, 2019. [Google Scholar]
- Haido, D.; Specht, E.; Kehse, G.; Ferri, V.; Christiansen, T.L.; Bresciani, P. Simulation of lime calcination in PFR kiln–Influence of energy input and lime throughput. ZKG Int. 2011, 64, 52–63. [Google Scholar]
- Schlegel, T.; Padox, G. Understanding the process conditions in a parallel flow regenerative kiln. ZKG Int. 2016, 69, 56–59. [Google Scholar]
- Smith, D.K.; Leider, H.R. Low-temperature thermal expansion of LiH, MgO and CaO. J. Appl. Crystallogr. 1968, 1, 246–249. [Google Scholar] [CrossRef]
- Chaix-Pluchery, O.; Pannetier, J.; Bouillot, J.; Niepce, J.C. Structural prereactional transformations in Ca(OH)2. J. Solid State Chem. 1987, 67, 225–234. [Google Scholar] [CrossRef]
- Schmahl, N.G.; Eikerling, G.F. Über Kryptomodifikationen des Cu(II)-Oxids. Z. Phys. Chem. 1968, 62, 268–279. [Google Scholar] [CrossRef]
- Toraya, H.; Yamazaki, S. Simulated annealing structure solution of a new phase of dicalcium silicate Ca2SiO4 and the mechanism of structural changes from α-dicalcium silicate hydrate to αL′-dicalcium silicate via the new phase. Acta Crystallogr. Sect. B Struct. Sci. 2002, 58, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Lager, G.A.; Jorgensen, J.D.; Rotella, F.J. Crystal structure and thermal expansion of α-quartz SiO2 at low temperatures. J. Appl. Phys. 1982, 53, 6751–6756. [Google Scholar] [CrossRef]
- Kimata, M.; Ii, N. The structural property of synthetic gehlenite, Ca2Al2SiO7. Neues Jahrb. Mineralogie. Abh. 1982, 144, 254–267. [Google Scholar] [CrossRef]
- Kusaka, K.; Hagiya, K.; Ohmasa, M.; Okano, Y.; Mukai, M.; Iishi, K.; Haga, N. Determination of structures of Ca2CoSi2O7, Ca2MgSi2O7, and Ca2(Mg0.55Fe0.45)Si2O7 in incommensurate and normal phases and observation of diffuse streaks at high temperature. Phys. Chem. Miner. 2001, 28, 150–166. [Google Scholar] [CrossRef]
- Moore, P.B.; Araki, T. Atomic arrangement of merwinite, Ca3Mg[SiO4]2, an unusual dense-packed structure of geophysical interest. Am. Mineral. 1972, 57, 1355–1374. [Google Scholar]
- Dal Negro, A.; De Pieri, R.; Quareni, S.; Taylor, W.H. The crystal structures of nine K feldspars from the Adamello Massif (Northern Italy). Acta Crystallogr. Sect. B 1978, 34, 2699–2707. [Google Scholar] [CrossRef]
- Wenk, H.-R.; Kroll, H. Analysis of P-1, I-1 and C-1 plagioclase structures. Bull. Minéralog. 1984, 107, 467–487. [Google Scholar] [CrossRef]
- Borodin, V.L.; Lyutin, V.V.; Ilyukhin, V.V.; Belov, N.V. The isomorphous series calcite-otavite. Dokl. Akad. Nauk SSSR 1979, 245, 1099–1101. [Google Scholar]
- Effenberger, H.; Kirfel, A.; Will, G. Untersuchungen zur Elektronendichteverteilung im Dolomit CaMg(CO3)2. Mineral. Petrol. 1983, 31, 151–164. [Google Scholar] [CrossRef]
- Catti, M.; Ferraris, G.; Hull, S.; Pavese, A. Powder neutron diffraction study of 2M1 muscovite at room pressure and at 2 GPa. Eur. J. Mineral. 1994, 6, 171–178. [Google Scholar] [CrossRef]
- Zanazzi, P.F.; Montagnoli, M.; Nazzareni, S.; Comodi, P. Structural effects of pressure on monoclinic chlorite: A single-crystal study. Am. Mineral. 2007, 92, 655–661. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Accuracy of XRPD QPA using the combined Rietveld-RIR method. J. Appl. Crystallogr. 2000, 33, 267–278. [Google Scholar] [CrossRef]
- Reeder, R.J.; Dollase, W.A. Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Mossbauer, and TEM study. Am. Mineral. 1989, 74, 1159–1167. [Google Scholar]
- Will, G.; Lauterjung, J.; Schmitz, H.; Hinze, E. Bulk Moduli of 3d-Transition Element Pyrites Measured with Synchrotron Radiation In a New Belt Type Apparatus. Mater. Res. Soc. Symp. Proc. MRSSP 1984, 22, 49–52. [Google Scholar]
- Walter, G. X-ray charge density study of rutile (TiO2). Z. Kristallographie. Cryst. Mater. 1982, 160, 187–204. [Google Scholar] [CrossRef]
Range | ||
---|---|---|
Silicon | wt.-% | 0.005–0.9 |
Aluminium | 0.01–0.4 | |
Iron | 0.007–0.2 | |
Sulphur | 0.002–0.01 | |
Manganese | mg/kg | 13–632 |
Antimony | 0.1–3 | |
Arsenic | 0.1–15 | |
Boron | 1–50 | |
Cadmium | 0.1–1.5 | |
Chromium | 3–300 | |
Copper | 1–30 | |
Fluoride | 5–3000 | |
Lead | 0.5–30 | |
Mercury | 0.02–0.1 | |
Molybdenum | 0.1–30 | |
Nickel | 0.5–15 | |
Selenium | 0.02–3 | |
Silver | 0.2–4 | |
Tin | 0.1–15 | |
Vanadium | 1–50 | |
Zinc | 3–500 |
LSas received 1 | LSwashed | LSwashing residue | QC | |
---|---|---|---|---|
CaO | 52.79 | 53.13 | 47.88 | 17.93 |
MgO | 1.02 | 1.08 | 2.62 | 5.58 |
SiO2 | 1.39 | 1.36 | 4.75 | 28.46 |
Al2O3 | 0.59 | 0.59 | 2.18 | 14.03 |
Fe2O3 | 0.32 | 0.27 | 0.93 | 5.08 |
Mn2O3 | n.a. | 0.02 | 0.03 | 0.05 |
P2O5 | n.a. | <0.00 | 0.02 | 0.03 |
Na2O | n.a. | 0.00 | 0.04 | 0.40 |
TiO2 | n.a. | 0.03 | 0.12 | 0.79 |
K2O | 0.15 | 0.15 | 0.63 | 4.27 |
S | 0.08 | 0.03 | 0.15 | 1.05 |
LOI | 42.94 | 42.90 | 40.22 | 20.84 |
Sum [wt.-%] | 99.3 | 99.5 | 99.6 | 98.5 |
Share [%] | 100 | 98.8 | 1.2 | |
Impurities (ton/month) | 945 | 35 | ||
Share of impurities [%] | 96 | 4 |
wt.-% | LS | LPQ | IPQ | |||||
---|---|---|---|---|---|---|---|---|
Area 1 (n = 11) | Area 2 (n = 16) | Area 3 (n = 10) | Area 1 (n = 9) | Area 2 (n = 14) | Area 3 (n = 9) | Area 1 (n = 8) | Area 2 (n = 8) | |
CaO | 95.2 | 79.0 | 54.5 | 96.9 | 82.7 | 48.8 | 95.4 | 76.1 |
MgO | 1.2 | 4.0 | 6.4 | 1.1 | 4.3 | 20.7 | 1.2 | 3.3 |
SiO2 | 2.5 | 10.1 | 23.0 | 1.3 | 8.0 | 18.2 | 2.3 | 14.2 |
Al2O3 | 1.0 | 4.3 | 9.9 | 0.5 | 3.6 | 9.1 | 0.7 | 3.6 |
Fe2O3 | 0.1 | 1.2 | 2.9 | 0.1 | 1.3 | 3.0 | 0.1 | 1.3 |
TiO2 | n.d. | n.d. | 0.1 | n.d. | n.d. | 0.1 | n.d. | n.d. |
K2O | 0.1 | 1.2 | 3.1 | n.d. | n.d. | 0.2 | n.d. | 0.5 |
S | n.d. | 0.2 | 0.1 | n.d. | 0.1 | n.d. | 0.2 | 1.1 |
Sum | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
LS | QC | LPQ | IPQ | ||
---|---|---|---|---|---|
Formula | Mineral Name | Washing Residue | Bulk | Surface Layer | Surface Layer |
CaCO3 | Calcite | 86 | 23 | - | - |
SiO2 | Quartz | <1 | 1 | - | - |
CaMg(CO3)2 | Dolomite | 12 | - | - | - |
Ca(0.67Mg, 0.33Fe)(CO3)2 | Ferroan Dolomite | - | 20 | - | - |
KAl4Si2O9(OH)3/KAl2(AlSi3O10)(OH)2 | Illite/Muscovite | 2 | 38 | - | - |
(Mg11.148Fe0.852)((Si4.99Al3.01)O20(OH)16) | Chlorite | <1 | 8 | - | - |
K0.94Na0.06Si3.05Al0.95O8/NaSi3Al0.91O8 | Microcline/Albite | - | 9 | - | - |
FeS2 | Pyrite | - | 2 | - | - |
TiO2 | Rutile | - | <1 | - | - |
CaO | Lime | - | - | 20 | 82 |
MgO | Periclase | - | - | 15 | 3 |
Ca2SiO4 | Larnite | - | - | 12 | 10 |
Ca(OH)2 | Portlandite | - | - | <1 | <1 |
Ca2Al2SiO7 | Gehlenite | - | - | 23 | - |
Ca2MgSi2O7 | Åkermanite | - | - | 3 | - |
Ca3Mg(SiO4)2 | Merwinite | - | - | 27 | 4 |
Sum | 101 | 101 | 101 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sandström, K.; Carlborg, M.; Eriksson, M.; Broström, M. Characterization of Limestone Surface Impurities and Resulting Quicklime Quality. Minerals 2024, 14, 608. https://doi.org/10.3390/min14060608
Sandström K, Carlborg M, Eriksson M, Broström M. Characterization of Limestone Surface Impurities and Resulting Quicklime Quality. Minerals. 2024; 14(6):608. https://doi.org/10.3390/min14060608
Chicago/Turabian StyleSandström, Karin, Markus Carlborg, Matias Eriksson, and Markus Broström. 2024. "Characterization of Limestone Surface Impurities and Resulting Quicklime Quality" Minerals 14, no. 6: 608. https://doi.org/10.3390/min14060608
APA StyleSandström, K., Carlborg, M., Eriksson, M., & Broström, M. (2024). Characterization of Limestone Surface Impurities and Resulting Quicklime Quality. Minerals, 14(6), 608. https://doi.org/10.3390/min14060608