DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation
Abstract
:1. Introduction
2. Geological Framework of the Study Area and Conceptual Modeling
3. Feature Analysis
4. Methods
4.1. General Workflow
4.2. Deep Convolutional Generative Adversarial Network (DCGAN)
4.3. Random Forest (RF)
5. Analysis and Results
5.1. Feature Augmentation by DCGAN
5.2. Augmented Dataset
5.3. Data Augmentation Practical Implication
Mineral Prospectivity Mapping (MPM)
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lou, Y.; Liu, Y. Mineral Prospectivity Mapping Based on a Novel Self-Ensembling Graph Convolutional Network. Math. Geosci. 2025. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, Q.; Xia, Q.; Wang, X. Mineral potential mapping for tungsten polymetallic deposits in the Nanling metallogenic belt, South China. J. Earth Sci. 2014, 25, 689–700. [Google Scholar] [CrossRef]
- Liu, Y.; Xia, Q.; Cheng, Q. Aeromagnetic and geochemical signatures in the Chinese Western Tianshan: Implications for tectonic setting and mineral exploration. Nat. Resour. Res. 2021, 30, 3165–3195. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A.; Yousefi, M.; Carranza, E.J. Multifractal interpolation and spectrum–area fractal modeling of stream sediment geochemical data: Implications for mapping exploration targets. J. Afr. Earth Sci. 2017, 128, 5–15. [Google Scholar] [CrossRef]
- Ghasemzadeh, S.; Maghsoudi, A.; Yousefi, M.; Mihalasky, M.J. Information value-based geochemical anomaly modeling: A statistical index to generate enhanced geochemical signatures for mineral exploration targeting. Appl. Geochem. 2022, 136, 105177. [Google Scholar] [CrossRef]
- Saremi, M.; Maghsoudi, A.; Ghezelbash, R.; Yousefi, M.; Hezarkhani, A. Targeting of porphyry copper mineralization using a continuous-based logistic function approach in the Varzaghan district, north of Urumieh-Dokhtar magmatic arc. J. Min. Environ. 2024. [Google Scholar] [CrossRef]
- Saremi, M.; Maghsoudi, A.; Hoseinzade, Z.; Mokhtari, A.R. Data-driven AHP: A novel method for porphyry copper prospectivity mapping in the Varzaghan District, NW Iran. Earth Sci. Inform. 2024, 17, 5063–5078. [Google Scholar] [CrossRef]
- Zuo, R.; Xiong, Y.; Wang, Z.; Wang, J.; Kreuzer, O.P. A new generation of artificial intelligence algorithms for mineral prospectivity mapping. Nat. Resour. Res. 2023, 32, 1859–1869. [Google Scholar] [CrossRef]
- Zuo, R.; Cheng, Q.; Xu, Y.; Yang, F.; Xiong, Y.; Wang, Z.; Kreuzer, O.P. Explainable artificial intelligence models for mineral prospectivity mapping. Sci. China Earth Sci. 2024, 67, 2864–2875. [Google Scholar] [CrossRef]
- Shirazi, A.; Hezarkhani, A.; Shirazy, A.; Pour, A.B. Geochemical modeling of copper mineralization using geostatistical and machine learning algorithms in the Sahlabad area, Iran. Minerals 2023, 13, 1133. [Google Scholar] [CrossRef]
- Hajihosseinlou, M.; Maghsoudi, A.; Ghezelbash, R. A novel scheme for mapping of MVT-type Pb–Zn prospectivity: LightGBM, a highly efficient gradient boosting decision tree machine learning algorithm. Nat. Resour. Res. 2023, 32, 2417–2438. [Google Scholar] [CrossRef]
- Zuo, R.; Carranza, E.J. Machine learning-based mapping for mineral exploration. Math. Geosci. 2023, 55, 891–895. [Google Scholar] [CrossRef]
- Mou, N.; Carranza, E.J.; Wang, G.; Sun, X. A framework for data-driven mineral prospectivity mapping with interpretable machine learning and modulated predictive modeling. Nat. Resour. Res. 2023, 32, 2439–2462. [Google Scholar] [CrossRef]
- Xu, Y.; Zuo, R. Spatial-spectrum two-branch model based on a superpixel graph convolutional network and 1DCNN for geochemical anomaly identification. Math. Geosci. 2024. [Google Scholar] [CrossRef]
- Parsa, M.; Carranza, E.J. Modulating the impacts of stochastic uncertainties linked to deposit locations in data-driven predictive mapping of mineral prospectivity. Nat. Resour. Res. 2021, 30, 3081–3097. [Google Scholar] [CrossRef]
- Zuo, R.; Kreuzer, O.P.; Wang, J.; Xiong, Y.; Zhang, Z.; Wang, Z. Uncertainties in GIS-based mineral prospectivity mapping: Key types, potential impacts and possible solutions. Nat. Resour. Res. 2021, 30, 3059–3079. [Google Scholar] [CrossRef]
- Daviran, M.; Parsa, M.; Maghsoudi, A.; Ghezelbash, R. Quantifying uncertainties linked to the diversity of mathematical frameworks in knowledge-driven mineral prospectivity mapping. Nat. Resour. Res. 2022, 31, 2271–2287. [Google Scholar] [CrossRef]
- Yang, F.; Wang, Z.; Zuo, R.; Sun, S.; Zhou, B. Quantification of uncertainty associated with evidence layers in mineral prospectivity mapping using direct sampling and convolutional neural network. Nat. Resour. Res. 2022, 32, 79–98. [Google Scholar] [CrossRef]
- Yousefi, M.; Lindsay, M.D.; Kreuzer, O. Mitigating uncertainties in mineral exploration targeting: Majority voting and confidence index approaches in the context of an exploration information system (EIS). Ore Geol. Rev. 2024, 165, 105930. [Google Scholar] [CrossRef]
- Lin, N.; Chen, Y.; Liu, H.; Liu, H. A comparative study of machine learning models with hyperparameter optimization algorithm for mapping mineral prospectivity. Minerals 2021, 11, 159. [Google Scholar] [CrossRef]
- Fan, M.; Xiao, K.; Sun, L.; Zhang, S.; Xu, Y. Automated hyperparameter optimization of gradient boosting decision tree approach for gold mineral prospectivity mapping in the Xiong’ershan area. Minerals 2022, 12, 1621. [Google Scholar] [CrossRef]
- Ghezelbash, R.; Maghsoudi, A.; Shamekhi, M.; Pradhan, B.; Daviran, M. Genetic algorithm to optimize the SVM and K-means algorithms for mapping of mineral prospectivity. Neural Comput. Appl. 2022, 35, 719–733. [Google Scholar] [CrossRef]
- Pradhan, B.; Jena, R.; Talukdar, D.; Mohanty, M.; Sahu, B.K.; Raul, A.K.; Abdul Maulud, K. A new method to evaluate gold mineralisation-potential mapping using deep learning and an explainable artificial intelligence (XAI) model. Remote Sens. 2022, 14, 4486. [Google Scholar] [CrossRef]
- Daviran, M.; Ghezelbash, R.; Niknezhad, M.R.; Maghsoudi, A.; Ghaeminejad, H. Hybridizing K-means clustering algorithm with harmony search and artificial bee colony optimizers for intelligence mineral prospectivity mapping. Earth Sci. Inform. 2023, 16, 2143–2165. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef]
- Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Al-dujaili, A.; Duan, Y.; Al-Shamma, O.; Santamaría, J.I.; Fadhel, M.A.; Al-Amidie, M.; Farhan, L. Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions. J. Big Data 2021, 8, 53. [Google Scholar] [CrossRef]
- Talaei Khoei, T.; Ould Slimane, H.; Kaabouch, N. Deep Learning: Systematic Review, Models, Challenges, and Research Directions. Neural Comput. Appl. 2023, 35, 23103–23124. [Google Scholar] [CrossRef]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Courville, A.; Ozair, S.; Bengio, Y. Generative adversarial nets. Adv. Neural Inf. Process. Syst. 2014, 27, 2672–2680. [Google Scholar] [CrossRef]
- Wu, E.; Wu, K.; Cox, D.; Lotter, W. Conditional infilling GANs for data augmentation in mammogram classification. In Image Analysis for Moving Organ, Breast, and Thoracic Images; Springer: Cham, Switzerland, 2018; pp. 98–106. [Google Scholar]
- Frid-Adar, M.; Diamant, I.; Klang, E.; Amitai, M.; Goldberger, J.; Greenspan, H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing 2018, 321, 321–331. [Google Scholar] [CrossRef]
- Huang, H.; Yu, P.; Wang, C. An introduction to image synthesis with generative adversarial nets. arXiv 2018, arXiv:1803.04469. [Google Scholar] [CrossRef]
- Li, T.; Zuo, R.; Zhao, X.; Zhao, K. Mapping prospectivity for regolith-hosted REE deposits via convolutional neural network with generative adversarial network augmented data. Ore Geol. Rev. 2022, 142, 104693. [Google Scholar] [CrossRef]
- Puzyrev, V.; Salles, T.; Surma, G.; Elders, C. Geophysical model generation with generative adversarial networks. Geosci. Lett. 2022, 9, 1–9. [Google Scholar] [CrossRef]
- Stocklin, J.; Ruttner, A.; Nabavi, M. New Data on the Lower Paleozoic and Pre-Cambrian of North Iran; Geological Survey of Iran: Tehran, Iran, 1964; p. 1. [Google Scholar]
- Geyer, G.; Bayet-Goll, A.; Wilmsen, M.; Mahboubi, A.; Moussavi-Harami, R. Lithostratigraphic revision of the middle Cambrian (Series 3) and upper Cambrian (Furongian) in northern and central Iran. Newslett. Stratigr. 2014, 47, 21–59. [Google Scholar] [CrossRef]
- Khodami, M.; Shabanian, N.; Nouri Sandiani, F.; Asahara, Y.; Davoudian, A.R. A record of Late Cambrian–Early Ordovician arc magmatism in Yazd block, Central Iran. Arab. J. Geosci. 2022, 15, 876. [Google Scholar] [CrossRef]
- Rajabi, A. Metallogeny and Geology of Zinc-Lead Deposits with Sedimentary Host Rocks in Iran; Univ. Tehran: Tehran, Iran, 2021. [Google Scholar]
- Leach, D.L.; Sangster, D. Mississippi Valley-Type Lead-Zinc Deposits. In Mineral Deposit Modeling; Kirkham, R.V., Sinclair, W.D., Thorpe, R.I., Duke, J.M., Eds.; Geological Association of Canada Special Paper 40; Geological Association of Canada: St. John’s, NL, Canada, 1993; pp. 289–314. [Google Scholar]
- Bradley, D.; Leach, D. Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands. Miner. Depos. 2003, 38, 652–667. [Google Scholar] [CrossRef]
- Qaderi, S.; Maghsoudi, A.; Pour, A.B.; Yousefi, M. Geological Controlling Factors on Mississippi Valley-Type Pb-Zn Mineralization in Western Semnan, Iran. Minerals 2024, 14, 957. [Google Scholar] [CrossRef]
- Bazargani-Guilani, K.; Faramarzi, M.; Tak, M.A. Multistage dolomitization in the Cretaceous carbonates of the east Shahmirzad area, north Semnan, central Alborz, Iran. Carbonates Evaporites 2010, 25, 177–191. [Google Scholar] [CrossRef]
- Bazargani-Guilani, K.; Nekouvaght Tak, M.A.; Faramarzi, M. Pb–Zn deposits in Cretaceous carbonate host rocks, northeast Shahmirzad, central Alborz, Iran. Aust. J. Earth Sci. 2011, 58, 297–307. [Google Scholar] [CrossRef]
- Bazargani-Guilani, K.; Rabiei, M.; Mehrabi, B. Effects of host rock mineralogical composition and sedimentary facies on development of geochemical halos in Shahmirzad Pb-Zn deposits, central Alborz, Iran. J. Geochem. Explor. 2013, 124, 155–165. [Google Scholar] [CrossRef]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Cretaceous carbonate-hosted Zn–Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration. Int. Geol. Rev. 2012, 54, 1649–1672. [Google Scholar] [CrossRef]
- Rajabi, A.; Rastad, E.; Canet, C. Metallogeny of Permian–Triassic carbonate-hosted Zn–Pb and F deposits of Iran: A review for future mineral exploration. Aust. J. Earth Sci. 2013, 60, 197–216. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Application of one-class support vector machine to quickly identify multivariate anomalies from geochemical exploration data. Geochem. Explor. Environ. Anal. 2017, 17, 231–238. [Google Scholar] [CrossRef]
- Grunsky, E.; Caritat, P.D. State-of-the-Art Analysis of Geochemical Data for Mineral Exploration. Geochem. Explor. Environ. Anal. 2019, 20, geochem2019-031. [Google Scholar] [CrossRef]
- Li, H.; Li, X.; Yuan, F.; Jowitt, S.; Zhang, M.; Zhou, J.; Zhou, T.; Li, X.; Ge, C.; Wu, B. Convolutional neural network and transfer learning based mineral prospectivity modeling for geochemical exploration of Au mineralization within the Guandian–Zhangbaling area, Anhui Province, China. Appl. Geochem. 2020, 122, 104747. [Google Scholar] [CrossRef]
- Parsa, M.; Maghsoudi, A. Controls on Mississippi Valley-Type Zn-Pb mineralization in Behabad district, Central Iran: Constraints from spatial and numerical analyses. J. Afr. Earth Sci. 2018, 140, 189–198. [Google Scholar] [CrossRef]
- Gibson, G.M.; Edwards, S. Basin inversion and structural architecture as constraints on fluid flow and Pb–Zn mineralization in the Paleo–Mesoproterozoic sedimentary sequences of northern Australia. Solid Earth 2020, 11, 1205–1226. [Google Scholar] [CrossRef]
- Ferrill, D.A.; Smart, K.J.; Morris, A.P. Resolved stress analysis, failure mode, and fault-controlled fluid conduits. Solid Earth 2020, 11, 899–908. [Google Scholar] [CrossRef]
- Bowness, N.P.; Cawood, A.J.; Ferrill, D.A.; Smart, K.J.; Bellow, H.B. Mineralogy controls fracture containment in mechanically layered carbonates. Geol. Mag. 2023, 159, 1855–1873. [Google Scholar] [CrossRef]
- Berman, M. Distance distributions associated with poisson processes of geometric figures. J. Appl. Probab. 1977, 14, 195–199. [Google Scholar] [CrossRef]
- Gorum, T.; Carranza, E.J.M. Control of style-of-faulting on spatial pattern of earthquake-triggered landslides. Int. J. Environ. Sci. Technol. 2015, 12, 3189–3212. [Google Scholar] [CrossRef]
- Nguemhe Fils, S.C.; Mimba, M.; Nyeck, B.; Nforba, M.; Boniface, K.; Nouck, P.; Hell, J. GIS-Based Spatial Analysis of Regional-Scale Structural Controls on Gold Mineralization Along the Bétaré-Oya Shear Zone, Eastern Cameroon. Nat. Resour. Res. 2020, 29, 3457–3477. [Google Scholar] [CrossRef]
- Zeeh, S.; Bechstädt, T. Carbonate-Hosted Pb-Zn Mineralization at Bleiberg-Kreuth (Austria): Compilation of Data and New Aspects. In Sediment-Hosted Zn-Pb Ores; Fontboté, L., Boni, M., Eds.; Special Publication of the Society for Geology Applied to Mineral Deposits; Springer: Berlin/Heidelberg, Germany, 1994; Volume 10, pp. 165–184. [Google Scholar] [CrossRef]
- Hosseini-Dinani, H.; Yazdi, M. Multi-dataset analysis to assess mineral potential of MVT-type zinc-lead deposits in Malayer-Isfahan metallogenic belt, Iran. Arab. J. Geosci. 2021, 14, 673. [Google Scholar] [CrossRef]
- He, Z.; Gao, J.; Li, S.; He, S. Mineralization of MVT Pb-Zn Deposits in the Process of Hydrocarbon Accumulation and Destruction in the Strong Structural Deformation Area of Eastern Sichuan, South China. Minerals 2022, 12, 1281. [Google Scholar] [CrossRef]
- Guan, G.; Li, S.; Li, R. Mineralization Process of MVT Zn-Pb Deposit Promoted by the Adsorbed Hydrocarbon: A Case Study from Mayuan Deposit on the North Margin of Sichuan Basin. Minerals 2023, 13, 72. [Google Scholar] [CrossRef]
- Navarro-Ciurana, D.; Corral, I.; Corbella, M. A tool for Zn-Pb MVT exploration by combining C and O isotopes and REE geochemistry of dolomite. Ore Geol. Rev. 2023, 156, 105405. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M.; Genderen, J.L. Detection of hydrothermal alteration zones in a tropical region using satellite remote sensing data: Bau Goldfield, Sarawak, Malaysia. Ore Geol. Rev. 2013, 54, 181–196. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Crispini, L.; Läufer, A.; Hong, J.K.; Park, T.S.; Zoheir, B.; Pradhan, B.; Muslim, A.M.; Hossain, M.S.; et al. Mapping Listvenite Occurrences in the Damage Zones of Northern Victoria Land, Antarctica Using ASTER Satellite Remote Sensing Data. Remote Sens. 2019, 11, 1408. [Google Scholar] [CrossRef]
- Crósta, A.P.; de Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTER imagery and principal component analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Gabr, S.S.; Ghulam, A.; Kusky, T.M. Detecting areas of high-potential gold mineralization using ASTER data. Ore Geol. Rev. 2010, 38, 59–69. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, T.S.; Park, Y.; Hong, J.K.; Zoheir, B.; Pradhan, B.; Ayoobi, I.; Hashim, M. Application of Multi-Sensor Satellite Data for Exploration of Zn-Pb Sulfide Mineralization in the Franklinian Basin, North Greenland. Remote Sens. 2018, 10, 1186. [Google Scholar] [CrossRef]
- Abubakar, A.J.; Hashim, M.; Pour, A.B. Identification of hydrothermal alteration minerals associated with geothermal system using ASTER and Hyperion satellite data: A case study from Yankari Park, NE Nigeria. Geocarto Int. 2019, 34, 597–625. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Pour, A.B.; Muslim, A.M.; Hossain, M.S.; Misra, A. ASTER and WorldView-3 satellite data for mapping lithology and alteration minerals associated with Pb-Zn mineralization. Geocarto Int. 2020, 37, 1782–1812. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Hajaj, S.; El Harti, A.; Jellouli, A.; Pour, A.B.; Himyari, S.M.; Hamzaoui, A.; Bensalah, M.K.; Benaouiss, N.; Hashim, M. HyMap imagery for copper and manganese prospecting in the east of Ameln valley shear zone (Kerdous inlier, western Anti-Atlas, Morocco). J. Spat. Sci. 2023, 69, 81–102. [Google Scholar] [CrossRef]
- Pour, B.A.; Hashim, M. The application of ASTER remote sensing data to porphyry copper and epithermal gold deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Carranza, E.J.M.; Hale, M. Where are porphyry copper deposits spatially localized? A case study in Benguet province, Philippines. Nat. Resour. Res. 2002, 11, 45–59. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer Science Business Media: New York, NY, USA, 2006. [Google Scholar]
- Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS. In Handbook of Exploration and Environmental Geochemistry; Elsevier: Amsterdam, The Netherlands, 2008; Volume 11. [Google Scholar]
- Theodoridis, S.; Koutroumbas, K. Clustering: Basic concepts. Pattern Recogn. 2009, 595–625. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Geochemical mineralization probability index (GMPI): A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping. J. Geochem. Explor. 2012, 115, 24–35. [Google Scholar] [CrossRef]
- Yousefi, M.; Kamkar-Rouhani, A.; Carranza, E.J.M. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping. Geochem. Explor. Environ. Anal. 2013, 14, 45–58. [Google Scholar] [CrossRef]
- Mutele, L.; Billay, A.; Hunt, J.P. Knowledge-Driven Prospectivity Mapping for Granite-Related Polymetallic Sn–F–(REE) mineralization, Bushveld Igneous Complex, South Africa. Nat. Resour. Res. 2017, 26, 535–552. [Google Scholar] [CrossRef]
- Nykänen, V.; Törmänen, T.; Niiranen, T. Cobalt Prospectivity Using a Conceptual Fuzzy Logic Overlay Method Enhanced with the Mineral Systems Approach. Nat. Resour. Res. 2023, 32, 2387–2416. [Google Scholar] [CrossRef]
- Brownlee, J. A Tour of Generative Adversarial Network Models. Machine Learning Mastery. 2019. Available online: https://machinelearningmastery.com/tour-of-generative-adversarial-network-models/ (accessed on 12 July 2019).
- Zhao, G.; Cai, Z.; Wang, X.; Dang, X. GAN Data Augmentation Methods in Rock Classification. Appl. Sci. 2023, 13, 5316. [Google Scholar] [CrossRef]
- Ahmad, Z.; Jaffri, Z.U.; Chen, M.; Bao, S. Understanding GANs: Fundamentals, variants, training challenges, applications, and open problems. Multimed. Tools Appl. 2024. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Biometrics 1984, 40, 874. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Carranza, E.J.; Laborte, A.G. Data-driven predictive mapping of gold prospectivity, Baguio district, Philippines: Application of Random Forests algorithm. Ore Geol. Rev. 2015, 71, 777–787. [Google Scholar] [CrossRef]
- Xiang, J.; Xiao, K.; Carranza, E.J.; Chen, J.; Li, S. 3D Mineral Prospectivity Mapping with Random Forests: A Case Study of Tongling, Anhui, China. Nat. Resour. Res. 2019, 29, 395–414. [Google Scholar] [CrossRef]
- Bigdeli, A.; Maghsoudi, A.; Ghezelbash, R. Recognizing Geochemical Anomalies Associated with Mineral Resources Using Singularity Analysis and Random Forest Models in the Torud-Chahshirin Belt, Northeast Iran. Minerals 2023, 13, 1399. [Google Scholar] [CrossRef]
- CERN. “Probability Density Functions (PDF).” ROOT, CERN. Available online: https://root.cern.ch/doc/v608/group__PdfFunc.html (accessed on 25 December 2024).
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences. In The SAGE Encyclopedia of Research Design; SAGE Publications: Thousand Oaks, CA, USA, 1969. [Google Scholar]
- Wen, P.; Xu, Q.; Yang, Z.; He, Y.; Huang, Q. Exploring the Algorithm-Dependent Generalization of AUPRC Optimization with List Stability. arXiv 2022, arXiv:abs/2209.13262. [Google Scholar]
- Adler, A.; Araya-Polo, M.; Poggio, T.A. Deep Learning for Seismic Inverse Problems: Toward the Acceleration of Geophysical Analysis Workflows. IEEE Signal Process. Mag. 2021, 38, 89–119. [Google Scholar] [CrossRef]
- Sun, Y.; Araya-Polo, M.; Williamson, P. Data characterization and transfer learning for DL-driven velocity model building. In First International Meeting for Applied Geoscience & Energy Expanded Abstracts; Society of Petroleum Engineers: Richardson, TX, USA, 2021. [Google Scholar]
Characteristic | Value | Explanation |
---|---|---|
Model | Random Forest | A machine learning model is used for regression/classification tasks, which builds multiple decision trees and merges them to get a more accurate and stable prediction. |
Number of Estimators | 300 | The number of trees in the forest. More trees can improve performance but also increase computation time. |
Random State | 42 | A seed used by the random number generator to ensure reproducibility of the results. |
Classes Based on the Natural Break Tool | Number of Cells | Proportion of the Study Area (%) | Known Deposit Occupied | Proportion of Known Deposit (%) |
---|---|---|---|---|
0–0.09 | 52,665 | 58 | 0 | 0 |
0.09–0.30 | 12,387 | 14 | 0 | 0 |
0.30–0.57 | 5076 | 6 | 2 | 12.5 |
0.57–0.84 | 5124 | 7 | 5 | 31.25 |
0.84–1 | 8187 | 9 | 9 | 56.25 |
Classes Based on the Natural Break Tool | Number of Cells | Proportion of the Study Area (%) | Known Deposit Occupied | Proportion of Known Deposit (%) |
---|---|---|---|---|
0–0.05 | 58,509 | 64 | 0 | 0 |
0.05–0.20 | 15,338 | 17 | 0 | 0 |
0.20–0.50 | 3102 | 3 | 1 | 6.25 |
0.50–0.82 | 6660 | 7 | 5 | 31.25 |
0.82–1 | 7695 | 8 | 10 | 62.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qaderi, S.; Maghsoudi, A.; Pour, A.B.; Rajabi, A.; Yousefi, M. DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation. Minerals 2025, 15, 71. https://doi.org/10.3390/min15010071
Qaderi S, Maghsoudi A, Pour AB, Rajabi A, Yousefi M. DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation. Minerals. 2025; 15(1):71. https://doi.org/10.3390/min15010071
Chicago/Turabian StyleQaderi, Soran, Abbas Maghsoudi, Amin Beiranvand Pour, Abdorrahman Rajabi, and Mahyar Yousefi. 2025. "DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation" Minerals 15, no. 1: 71. https://doi.org/10.3390/min15010071
APA StyleQaderi, S., Maghsoudi, A., Pour, A. B., Rajabi, A., & Yousefi, M. (2025). DCGAN-Based Feature Augmentation: A Novel Approach for Efficient Mineralization Prediction Through Data Generation. Minerals, 15(1), 71. https://doi.org/10.3390/min15010071